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It is proved that the Jost function of a central, momentum-dependent, S-state interaction is equal to

the ratio of the Fredholm determinant of the kernel of the integral equation for the outgoing scattering
solution in the momentum space representation to that of the regular solution in the same representa-
tion. This proof of the expected result is more general than that given by Warke and Bhaduri for a non-

local interaction.

I. INTRODUCTION

Jost and Pais! proved that the “Jost function” of

a central, local potential is equal to the Fredholm
determinant of the kernel of the integral equation
for the outgoing scattering solution ¢+ of the
Schrédinger equation. This result, valid only for
S-state interactions, was later generalized by New-
ton2,3 to the higher partial waves as well as for
local, noncentral potentials. Recently, these deri-
vations have been extended for the nonlocal, central,
S-state interaction by Warke and Bhaduri4 and to
the higher partial waves and for the nonlocal ten-
sor forces by Singh and Warke.5 It is found that
the Jost function for a nonlocal potential differs
from the Fredholm determinant of the ¥+ solution
by a real,k2-dependent factor. This factor gives
rise to the redundant zeros of the Jost function for
positive imaginary values of 2 which do not corre-
spond to bound states.

The momentum-dependent one-boson exchange nu-
cleon—nucleon potentials and phenomenological
momentum-dependent potentials are being used in
the problems of nuclear physics. These potentials
reproduce experimental phase shifts up to 350
MeV. Therefore, it would be useful to investigate
the general form of the Jost function for a momen-
tum-dependent potential. Contrary to local and
nonlocal interactions, in this case,the Wronskian of
two independent solutions of the Schrddinger equa-
tion at 7 = 0 is not equal to that at v = ., More-
over, the momentum-~dependent interaction U does
not commute with the radial wavefunction. Because
of these two reasons, the usual derivations quoted
above are not applicable. One has to investigate a
new approach to find out the general form of the
Jost function in this case. In this paper we prove
that the Jost function for a central, momentum-
dependent, S-state interaction is equal to the ratio
of the Fredholm determinant of the kernel of the
integral equation in the momentum space repre-
sentation of the Y-+ solution to that of the regular
solution ¢ in the same representation.

II. DERIVATION OF THE JOST FUNCTION AND
DISCUSSION

For reasons of simplicity, the proof given here is
restricted only for the S-state Jost function. Let

the central momentum-dependent nucleon-nucleon
interaction be yU, where

U= [p2w() + w@)p2l/m =k2V(r)/m, (1)
where
Vi) = — <—-—Qdfi";2" + Zw('r)%:—z + 2——1—)‘1;’77 %),

m being the nucleon mass,p the relative momen-
tum, and the radial part w(r);its first and second
derivatives go to zero as r = ®. The notations

used in this paper are close to that in Newton's
book.5 Let us introduce the various solutions of the
Schrddinger equation

(kz + Zd;z - w(ﬂ) ¥ =0, @)

The outgoing scattering solution is

YH) = Yor) +y [Glr, 7\ VW )y, (3)
where

Vo) = sinkr
and

G, (r,r’) = — sinkr . exp(ik7,)/k. 4)

The regular solution which obeys the boundary con-
ditions d
or=0=0 and ¢

r-0 = 1 (5)
is given by

o) = o) +y [Glr,r")Virolrar',  (6)

where
¢o(r) = sinkr/k

G(r,7') =) sink(r —7')/k forv' =v @

0 otherwise

Finally, the Jost solutions of (2) have the form

i) =f30) +y [Clr, v\ V) s@)dr',  (8)
where N
fE@) = et and G(r,7") = G(r', 7). (9)

These solutions satisfy the boundary conditions

ek fi(yy 51 as r o ®,

(10)

Note that, in Eqgs. (3)-(10) and what follows in this
section, we suppress the 2 subscript to the various
solutions and their Green's functions. The Jost
functions f*(k) are defined to be the values of the
Jost solutions f*(r) at » = 0.

Let the Wronskian of two independent solutions f
and g of (2) be

w(f,g] =f(r)£l‘f;§,Zl —g() %&,ﬁ- (11)

From (1),(2), and (11) it is easy to show that
[1+20@)]W[f,el=[1+ 200 = 0)]W[f,g],=oé

12)
If we let » — ® in (12), we obtain a relation

W(f,8], 00 = 1 + 2yw(0)IW[f,£],0,

from which it follows that

WS e = [1 + 2p0 @[], o =— zz‘k(.m
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The physical interpretation of Eq. (13) is that the
flux at » = ©,described by the Jost solution f*(r},
is [1 + 2yw(0)] times its flux at » = 0. In the case
of a repulsive, momentum-dependent interaction,
yw(0) > 0, the flux increases as the scattered par-
ticles are separated apart, and reaches its maxi-
mum value as v - ©, Before we proceed to the
derivation of the Jost function, let usfind out rela-
tions between the various solutions. The regular
solution ¢ (), being the solution of the same second-
order differential equation whose two independent
solutions are f*(r), can in general be written as a
linear combination of f*(»). Its coefficients can
easily be found by using (12) and (13). The expres-
sion for ¢(r) thus obtained is

o) = (1 + 2y ][+ ()~ ®) — fF~0)f* (R) /2. (14)

Comparing the asymptotic form of the integral
equation (5) of ¢(r) and that of (14), one obtains

[+ 2p0@)f*®) =1+ [, e*® Vr)o@dr. (15)

Similarly, from the comparison of the asymptotic
forms of (14) and (3) it follows that

V) = ko @)[1 + 2yw(0)]71/F+(k),
and that the scattering matrix S(® =/(k)/ft(%).

The interacting Green's functions are the solutions
of the following differential equation:

a2

(3

The Green's function for outgoing boundary con-
dition G*(r,7’), satisfies the following conditions:

(16)

+k2 — '}'V('V)) Sor.7)=080r —7').  (17)

(a) §*(r,7') =0 at » = 0;and > et*rg(r’)

as ¥ — ©,

(b) It is continuous at v = 7’ and satisfies

dSr,r") (v’ + €
1+ 2'yw(1")]"i(,—)( c=lase~0.
Using the known solutions of Eq. (2) along with
their Wronskians (12) and (13), it is straightforward
to show that the required solution of (17) is

GHr,v') =— [1 + 29w (0] 200 )f *(r,)/fH (k).

The Green's function §(r,7’) corresponding to the
noninteracting G(r,7’) given by (7) also satisfies
condition (b). However, insteadof (a), itis §(r,r') =
0 for ' = . Knowing §*(r,7’) in (18) and that &)
and f*(r) are the solutions of (2), it is easy to see
that

Str,r")
3 [1 + 2y @] o) *0) — o6 ') * () [ for 7 = v/

(18)

0 for » <v, (19)

Via (14), it can also be written in a suitable form

§6,7) =] OUTE) )

for r <
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for » =z »’
(20

Another formal solution of (17) for §@,7’) is

Slr,7) =G, v") +v [G, v\ V@) G, v")dr"
=G@r,v") +y [Glr, ")\ V")Gl", v )ar"

+ 'yz fG(,y.’yII) V(T")G(VII,T’I,) V(TIII)G(yﬂl,yl)drﬂdr”!.
e 1)

It is to be observed that

[6l, 7"V 6", 7"
= [GU", ") Vr"Gl' ,v")dr"

=0

+{206WGE" 7, 60" r 1} TS (22)
The second term on the right-hand side of (22)
vanishes because w(r”) =0 asv" = ®and G»" =
0,7) = 0. Substituting (22) in (21), one obtains
Sor'r) = Gr,v') +v [Glr,r") V"GO, v"Ydr"  (23)
In deriving (23), » and #’ in (21) are interchanged
and Eq. (9) is used. Thus,from (23), the 1nteractmg
Green's function 9(1/ ¥’), correspondmg to G(r 7’)
is related to §(»,#’) in the following way:

Sr,r') =G0, 7).

Differentiating both the sides of (15) with respect
to y, one gets

[t + 2y0(0)] L& + 2004

(24)

= foooeik'V("’)tl’(?’)d?’ +yfowe‘k’V(7)d—g§?dV.

From (5), (25)
o) = @ld —y6M 1oy,
‘%—E ol — Y6V 26V )
= @l(1 —yGV)"1G Vo)
= lgve). (26)

In the last step of the derivation of (26), Eq. (21) is
used. Let us simplify the second term of (25):

. fow e Viy) d_g_dir) dr

fow ekr V) (v, ¥ ) V') o lr)drdy’
[ 0 Vg b, 7 Ve idrdr
+2w(0)[1 + 2yw(0)]" f o) Vir)eirrdr.

In deriving (27), the following relations are used
which can easily be checked using Egs. (12)—(14),
(19), and (20):
[ e ving o, vdr = [ 8@, v Virlettrar, (28)
and

o ’ ! ! %
Jy $E.)VErewar = [ oty Vo) tr,r)dr

+20(0)[1 + 2yw(0)]"1¢(r). (29)
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Similarly, it can be seen that
" ewr vino@ar = | o) Ve dr + 2w(0).(30)
Substitution of (27) and (30) in Eq. (25) gives
[t + 200 L + 20074
= [, oVl +y [ S Veer ar)r
+20(0) + 2yw(0)[1 + 2yw(0)]-1
xJ" 60 Virlewr ar,

31
From (8), (23), and (24) it follows that >
Fro) = et 4y [ TG, ) VO ek ar'. (32)
One could also rewrite:
I o vimermar = [ e v ow)ar — 2(0).
33)

Via (15), (32}, and (33), Eq. (31) could be put into its
simpler form

1+ 200 L8 = [Z o verrmar. 69

In order to solve (34) for f+(k), let us convert it
from 7-space to the momentum space representa-
tion. A complete set of momentum states ll/p(r) to
be used are

t,bp(r) = 2/1 sinpr.
In terms of these basis states, the following rela-

tion between {p1G+|p’) and (p|181p") could be
derived from (18) and (19):

(35)

(ploYp'If") = )1 + 2y0(0)](p18 107
—{plg+ipn).

Inserting the set of states le in (34) and using (36),
one obtains

(36)

+ 0 00
iy L = [ [ apar g 1)
—plg+ oM Vip). (37
In deriving (37), use is made of the fact that
lvipy = (' vip). (38)

Henceforth, the traces (denoted by Tr) are to be
taken in the momentum space representation of
the operators. Integration of (37) yields

logf +(t) = [ [TrgV — Trg+Vidy’
= Tr log(l —yG,V) — Tr log(l —GV).
Thus, the final expression for the Jost function is

() = exp[Tr log(1 —yG,V)]/ exp[Tr log(1 — yG )]
= det(1 — yG, V)/det(1 — 4G V). (39)

The numerator in (39) is the Fredholm determinant
of the kernel of the integral equation for the out-
going scattering solution (3) in the momentum space
representation, while the denominator is the deter-
minant of the kernal of that of the regular solution
(5) in the momentum space representation. The
integral equations of ¥* and ¢ in the momentum
space representation have the same form for a
nonlocal interaction or for a momentum-~dependent
interaction. From this fact and from the result

in Ref.3, f*(k) in (39) has the expected form. In
the evaluation of the determinants in momentum
space, the following momentum representation of
G, and G would be useful:

(PI1GLp"Y = 6(p —p')/ (k2 — p2 + i€) and
(p1G1p")) = 6(p —p")/ (2 — p2).

The p =k point is to be avoided in the evaluation
of the determinant by choosing a proper mesh for
p. As observed in the nonlocal potentials,the de-
nominator in (39) introduces “redundant zeros” of
ft(k) for positive imaginary values of £ which do
not correspond to bound states. Via the approach
given in this paper, it can easily be shown that the
Jost function f*(k) given by (39) is the most general
one, valid for the superposition of a local, nonlocal,
and momentum-dependent potential. It is also
straightforward to generalize it to the higher par-
tial waves and for the non-central forces.
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A method for obtaining Green's dyadics of renormalized stochastic vector wave operators is presented
schematically and is applied to propagation of .elastic and electromagnetic waves in statistically homo-
geneous and isotropic media. Formula for effective propagation constants and renormalized Green's
dyadics are derived and then computed explicitly for various special cases of elastic and electromagnet-
ic waves with a special type of correlation function, Furthermore, parameters which affect the validity
of such a renormalization approximation are also derived by estimating the second nonvanishing term

of the renormalized series for average waves.

1. INTRODUCTION

Let L be a stochastic linear operator and  de-
note a solution of the equation

Lu = f,

where f represents a nonrandom source function,
The random part of the operator L, represented by
L', is a statistically homogeneous random operator
and is smaller than the nonrandom part,L, = L —
L’. Renormalization methods!~5 have been used
to obtain an equation for (1), the average solution
of (1.1), and for the effective propagation constant
of a propagating wave.

The Nth-order renormalized operator L, can be
written 3,4, 6 a5
N
L,=1Ly+ Z‘6 (L'T#
n=
where T is the so called “smoothing operator”3
defined by

Tv=— Lj1 (Lv— {L'v))

(1.1)

(1.2)

(1.3)

for a suitable random function v. Then the expan-
sion for () in terms of® L and T is

00 ) N i
w= 3 (_ L (v By % Tl}) IS

Let the random part of the solution be denoted by
u’. Then

o0 N
w=u—= 7, (TN)i(Z) Tf(u)).
i=0 j

=1

i=0

(1.5)

To carry out even a few terms of (1, 4) and (1. 5)
involves very complicated computations, If the
random field is not Gaussian, higher-order mo-
ments of the random operator L’ must also be
known. Similar difficulties are also encountered
when one attempts to use L, given by (1. 2) for
N> 1, Therefore,from a practical point of view,
approximations of the form

(= L1 F (1.6)
and

w = Tw) = TLTLf (1.7)
are most useful. In fact, all of the work reported
so far is confined to first-order renormalization
approximations of the form (1. 6) and (1. 7).

For example, Tatarskii and Gertenshtein® have
computed the Green's function of L, for scalar
waves and later Tatarskii® has also computed
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asymptotic expressions for the Green's dyadics
of L; for electromagnetic waves. Karal and
Keller,! with a different approach, have derived
dispersion relations for scalar, electromagnetic,
and elastic waves. There they have assumed a
plane wave type solution of the equation

L{w=0 (1.8)
toderive dispersion relations. From these disper-
sion relations, they have obtained formulas for
propagation constants and carried out computations
explicitly for some of the special cases.

In this paper a method for obtaining Green's dyad-
ics of the vector renormalized operator is pre-
sented schematically, and it is applied to elastic
and electromagnetic waves. Explicit results for
effective propagation constants and renormalized
Green's dyadics are obtained for several special
cases of elastic and electromagnetic waves under
the assumption of a homogeneous, isotropic ran-
dom medium characterized by exponential cor-
relation functions. From homogeneity, it follows
that L, is translationally invariant. At the end of
each example, far field expressions for the aver-
age waves are presented. Our result on the effec-
tive propagation constant agrees with that of Karal
and Keller? in the electromagnetic case, However,
for elastic waves, their computation contains some
errors which we shall point out later.

The limit of applicability of the renormalization
approximation is investigated by estimating the
second nonvanishing term on the right side of
(1.4). This limit has been discussed briefly by
Frisch,3 Tatarskii and Gertenshtein,* and Tatar-
skii.5 In particular, for the case of scalar waves
with a Gaussian refrative index, Frisch has em-
ployed a simple nondimensionalizing technique to
discuss the convergence of the expansions involv-
edinthe renormalization and to derive parameters
which affect the convergence.

2. GREEN'S DYADICS OF N-FOLD RENORMAL-
IZED TIME HARMONIC WAVE OPERATORS

The Green's dyadic of the N-fold renormalized
time harmonic wave operator, denoted by G, (x, %),
satisfies the equation
L,Gy(x, %) = T6(x — %) (2.1)
where x and ¥’ are three-dimensional space vari-
ables, I is an identity dyadic and 6(¥ — x’) is the
delta function. To obtain G, (x, x’) explicitly, we
take the threedimensional Fourier transformation
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of (2.1) and get

JILyGy(E 2] TemisRydx = Tewisir, (2.2)

By means of Green's vector identities and inte-
gration by parts we derive L}, which is defined by
the equation

f[Lf(; . (fe—is_.i)] “G (%, ¥)dx i
= [[LyG &, X)) (Teié5ydx,  (2.3)

Then, in view of the translation invariance of L
(2. 2) can be written as

,e(s)( fGN(i,E')e"is-‘fd}> L -
= Jo =is-%1 2. 4
N ,  (2.4)
where _
£,(3) = [Lp(TeisF)|eis* (2.5)

and the integral inside the parenthesis is nothing
but the Fourier transform of G ,(x, x').

In the case that £,(s) can be expressed in a sym-
metric form

£,(5) = £ 41 ()T + £ 45(5)S5, (2.6)
where s = |s]and § = s/|s|, the inverse of £ ,(s)
becomes

Jg.—l(g)
= &4 (s)I LAERN1(8) + £,,(8)7 1Ly 5(s)38.
2.7
Applying (2. 7) to both sides of (2. 4) and taking the
inverse Fourier transformation yields the useful
formula for the Green's dyadic G ,(x, '),

Gylx,x")
?
o7
y f [S sin(s7)
£y1(8)

8 £ y2(s) sin(s7)
ar (rsélm(s)[ L+ L
¥

— 503 7Y

rolle

w31 2 £ yo(s) sin{sr)
*J W[?ﬁ;(rsoem(s)@m(s) + £N2(§)]>]ds
2.8)

where 7 = |[x — x'| and 7 = (x —x')/|x —x'].

3. GREEN'S DYADICS FOR ELASTIC AND
ELECTROMAGNETIC WAVES

In the following subsections, elastic and electro-
magnetic waves in statistically homogeneous ran-
dom media are considered and the explicit expres-
sions for their Green's dyadics are computed.
Since the problems treated here are exactly the
same as those treated by Karal and Keller,! who
studied plane wave propagation, many of our dis-

cussions and expressions are the same as theirs.
Therefore, we will try not to repeat them here
again but simply refer to theirs.

A. Elastic Waves

Following Karal and Keller's! formulation of the
problem of solving for the displacement vector #
ina randomly inhomogeneous and isotropic medium
generated by a monochromatic source f, we have

Lyi= (A + 1o)V(V0) + pV20E + wpE, (3.1)

L' =\ + p)V(V-) + u,V28 + VAV %)
+ Vg X (VX ) + 2V, V)i + wp i, (3.2)
The Green's dyadic for the nonrandom operator L,

denoted bys7 G, (¥ — X’) can be decomposed into
the following forms

Golx — &) = Gy I + Gop77 (3.3)
= Gg(F— 7) + Gg(x — ¥) (3.4)
= (G§y +G§1)T + (Ggy + G§)77. (3.5)

Here G,, and G,,, coefficients of the dyadics 7 and
¥r respectively, are given by Egs. (37) of Ref. 1 ex-
cept that the delta functxon in Gy should be delet-
ed. Superscripts “c” and “s” in (3 4) and (3. 5) de-
note dilatational and rotational components of the
dyadic, respectively.

From (1. 2), L, acting on a nonrandom function
w(x) can be written as

Liw(x) = Lyw(x) — [{L'(%)Gy(x — X)L (x")dsx".
(3.6)
From (3. 2) and (3. 3), we obtain
Gy G| 2G
L'G, = [(7\1 + py) (_??3. + -2 +7§3)

Go2)

+ Uy (VZG01 + ~

2602\ , (o o [
- (Vu.l 1") GOl +

\ . 26,
+ w20, G,y T+ | 2(GY, —«—~—~(Vu1 7)

6G G
t oy (VZGOZ "““7,.'(‘)’2) Tyt “1)<Gé'1 “—“,,2%

’

G 4G
02 02 o
+ Gé’z v T2 ) + wzplGoz] ry

2G,, 2G,, .
+(c + Gy + UNT =2 T O,y

G,
(601 + ——) X Vi, 7, 3.7

where primes denote partial derivatives of the
function with respect to ». Karal and Keller'sl Eq.
(42) differs from (3. 7) and appears to be incorrect.

Assuming that the random process involved is
homogeneous and isotropic, we have

- = = 2

(LE)Gy(F — ¥)L'(x)) = By 7/(V"+ ) + By 7
+ By (7)) + B, (5 X V' X + 2PV + By T,
(3.8)

J.Math. Phys., Vol.13, No. 1, January 197:
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where the prime denotes that the V operator acts
on x’

§1 = k%(@‘kk + Z(R)\” + @w)G(g - ((RM + (Ruu)
X (k2G§ + K2G§) + (®, + ®,)E
+ wZ((R)\p + (RM)G0 + k2(®) + ®'y YrGg 171'
(3.9)
—(k2Gg + k2GR,

9 =— k%(d{}\"+ (Ruu)cé + (R;,qu

+ w2®, G, — K2R, 7G5 77,  (3.10)
By = F3(®), + ®),)G§ + R}, (R8GE + k2G§) — ®Y, E
— w2®) G, + k2Z®},rGg, v,  (3.11)

o
Y
Il

R2(®), + &, )GE + @), (R2GG + k2G§) — Ry B
— wi® G, + K2R}, 7GS, 77, (3.12)

Lo

5 = W= FE(®,, + ® )G§ + R E — R, (¥2G§
+ k2G8) + w2®, G, — K2R}, vGg,77],  (3.13)
E =(472w2p,7*)71{(6 — 6ik,r — 2k2r2)eity
— (6 — Bk — 3k2r2 + ik373)eity|T
— [(18 — 185k 7 — 8k272 + 2ik373)etker
— (18 — 18ik ¥ — Tk2r2 + k373)eikr |77 ],
(3.14)

Now upon substituting (3. 6) into (2. 3) with the
help of (3. 8), Green's vector identities and integra-
tion by parts, we get

Lii(7)

= Low(®) — [{B,'V' V' #(x")] + B,V 2in()
— By 7 X V') + By x 7 [V X w(x)]
— 2B, 7V (&) + By w(x)}dx'.  (3.15)

We insert Te=i5% for #(%) into (3. 15) and then
multiply (3. 15) by eis*~ to obtain

£,(3) = (W2py — oS2) ~ (A, + 1y )$2SS
+ fsz(El S5 + 52) — isB:S-;g — isB, - [7s
+ (?337] — §5}e‘i5-'vd17. (3.16)
Since the B ,i=1,2,,..,4,aredyadic functions in-

volving symmetrlc dyad1cs I and 77 only, we can
apply mean value theorems?® to the integral in
(3.16). After some simplification, £,(s) is given by
(2. 6) with

£11(8) = w2py — 1gs? — Dy (s), (3.17)
£1al) == Og * )2 = Dys),  @.18)
where
Dy(s) = f —s2 <BIh_B"s_rl-§ Z_;_lsg/
R el
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1 _ an\!
+ Blh—-B"——X——> dr 3.19
( s as/y ( )
Dz(s)
- g [ (ar A2 ) + (% 13h)
fo [s r2 5s2 By By 9s2  ss
s dh
— (B3 + By+ B+ BY) o<
+Bwi(§3_h_.lazh 16h>
4 y4\9s3 s093s2 s23s
1 [32h lahﬂ
—Brm —|—————14dr. 3.20
5 72<832 s 9§ ( )

Here superscripts “7” and “r»” denote the compo~
nents of the symmetric dyadics I and ')”V respec-
tively, and

h = (47v/s) sin(s7). (3.21)
Equations (3.17)-(3. 20) are very similar to those
obtained by Karal and Keller! through a different
approach. In fact, if they had not made mistakes
in computing L’G,, they would have been identical,

When correlation functions of fluctuating parts of
the medium constants are given, D, (s) and D, (s)
can be calculated. Once roots of equations

£,1(8) =0

L£10(8) + £1,(8)=0

(3.22)
and
(3. 23)

are determined, the inverse transform (2. 8) can be
computed by employing residue technique. To pro-
ceed further, let us assume that +K; and 2K, for
1=1,2,, and] =1,2,...,are the roots of7 (3.22)
and (3. 23) respectively. Then the Green's dyadic
may be written as

1 k2eikyr
[}3( s> [(1—iKp
14

21w2p,73 W,

G1(9?~ ) =

— K292)T — (3 — 3iK ;7 — K2 72)??]>

21K r
+z(’” [~ (1~ KT + (3 — 3K,
J

cj
~ K292 )?;]ﬂ ,

where

(3.24)

2p2
sks

k
W, = ZKSZZ + %0, 7K,
0 sl

1( l)r (3- 25)

%2 f; 9

v, R— [Dy(K,) + Dy(K ;). (3.26)
From (3. 24) we observe that the Green's dyadic
for L, is in a very similar form to that of G, ex-
cept that the coefficients of the dilatational and ro-
tational parts are k2 /W,; and k2 /W, respectively.

Wcjzngj-F

When all the correlation functions except &, are
zero, (3. 19) and (3. 20) can be simplified to”
ok
Dl(s) = wt f(;o <601h - GOZ _lE —> (Rpp('r)d’r’
sY2 ds (3. 27)
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0 1 92h
— i 1 oo
D,(s) = w fo Gy = < 882> (R (‘r)dr(3

Equations (3. 27) and (3. 28) have been previously
derived by Karal and Keller.! To obtain explicit
results, we choose for (Rpp form

(Rpp(r) =

where (p%) and a are respectively mean square
value and the correlation length of the random
function p, (¥). Since we are interested primarily
in the case of when #, .a<< 1, we insert (3. 29)
into (3.27) and (3. 28) and carry out the integration
to obtain

(e’ e, (3.29)

wpd) ( k202
s

Po 202 + (1 —ika)?

+ X(ks)>, (3.30)

Dy(s) =— ~ X(&,)

wZ(p) kzaz
+ Dy(s) = — p
Dy (s) + Dy(s) oo (sza2+(1—iksa)2
PR
where
Sl R g (sa )
Xt = a2, 1) (1-—ika>

1 — (2n + 2) ika .
@n+3en+y) 632
To obtain the roots of equations (3, 22) and (3. 23)

in the neighborhood of *%_ and +k , respectively, we
write

K2/k2 =1— (l/wzpo)Dl(Ks), (3.33)
K2/R2 =1~ (l/wzpo)[Dl(Kc) + Dy(K ). (3.34)

Upon substituting (3. 30)-(3. 32) into (3. 33) and
(3.34) and then iterating (3.33) and (3. 34) with

assumptions k£, a< 1 and ka0 < 1, we get

K /k, =1+ (03)/p3) [t k202 + ik3a3 + O(Fiat)),
(3.35)

K /k, =1+ ((p%)/py)[5 k2a2 + ik3a3 + O(kia?)].
(3.36)

Then with the insertion of (3. 35) and (3. 36), (3.25)
and (3. 26) become

W, =282 {1 + ((p})/p3)[k2a2 + i2k2a3 + O(kia4)]},

(3.37)
W, = 2k2 {1 + ((p?)/p3)[k2a? + i2k3a3 + O(kiat)]}.
(3.38)
Next, when all the correlation functions except
R \(7) = (A3 )er/ (3.39)
are zero, we have
D,(s) =0, (3. 40)

(u3) a73 [R2
wc=2kg{1+_uz- LU 7;—1
0 s

© 1 32

Dyls) = #2 J) gsza“(r)[coclhucoz 2 asz}
s ok s292p s ah)
+RLMNGHL~———G — + - —
xal )[ 02 4 3s °1<72 9s2  » 0s

s dn ok
i + ®RY, Gy S —
02 as] ArP01® 30

dr.  (3.41)

Substitution of (3. 39) into (3. 41) yields

~22) (2 k2a?
k2s2{% + ‘
o 3 s2q2 + (1— ika)?
[sa/(1 — z'kca)]2">
n

@n+3)2n + 1)/
(3.42)

Dy(s) =
w?

2k & oo
(1 — ik, a)?

Similarly, by iteration we obtain

K/k =1+ [A2)/(hg + 280)%] [(%— L k2a2)

3 )] (3.43)
under assumptions
A2)/ (g +2p,2K 1 (3.44)
and
ko 1,
Hence

W, = 22 {1 + [(A)(1 — &)/ (Ao + 2410)2]

X [(5—35k2a?) + §ika + O(k3a3))}. (3.45)

Since D, (s) = 0 when A, (x) is the only random vari-
able, the rotational part of the wave remains un-
changed.

Finally, when all the correlation functions extept

Ry (r) = (pgle /e

are zero, we proceed as above to obtain D; and D,.

Then, by assuming that (pu2)/ug < 1, ko< 1,
and k a < 1, we obtain

W) (1, B\, WD,
“% 3 15kzs 1-1(2) sT\35
k3
-2-}%%)] +0(k3), (3.47)

11 9k2 83
60 kz 10

)] + O(k3a2), (3.48)

(3. 46)

Ks/ks = l:l +

(12) 35
K/k, = [1+ 02 (24

" 20m
and then
2 B2 k3
Ws=2k§{1 +91—)[% (1_~£>+ 221 i, a<1 C>
ug K2 k3

+ O(k‘}az)}} y  (3.49)

465 k3
14 gtk a(——ks - )
+ O(k‘gaZi‘} .

(3.50)

J.Math. Phys.,Vol.13,No. 1, January 1972
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It must be pointed out that the results obtained
above for three special cases may be used to ob-
tain Green's dyadics of L, for other special cases
with all the correlation functions being zero except
combinations of ® , ®, ,and ®,, . For example, if
all correlauon funct10ns are zero except ® ~and
®,,, D,(s) will be simply the sum of the results
given by (3 30) and the D, (s) for (Rpp =0, Likewise
D,(s) for each special case can be easily obtained.

Therefore, we shall not consider such cases in
detail.

To obtain Green's dyadic of L, for each special
case, we simply insert the previously derived K,
K,, W, and Wy into (3. 24). Then the average wave
may be approximated by

)= [G,(x—®)AxdF

In the region where| ¥ — ¥’| is approximately equal
to |X|—Xx-%'/1%1,(3.51) may be expressed as

(3.51)

(@) = [ RN T + G (1RIFF) S, + [Ga(1ED) T

+ G (lx[)p7]- S, (3.52)
where
S, = [eri®oEF/ 17 (3, (3.53)
= [erik E2/ 17 f(x')dv", (3. 54)
G (lx— ) ;
=[Ga(lx —x']) + G(1x — 2 D))
Gy (lx——x|)+G 5(1x—x'() 77,
"6 L (3. 55)

From (3.24) and (3. 51), we see that the approxi-
mate average wave has the same form as that of
the wave in the absence of the random fluctuation
except that its propagation constants and the coef-
ficients of the Green's dyadic 1/47w2p, are re-
placed by corresponding effective propagation con-
stants and k2 ./2702p,W,_ _, respectively. There-
fore, the effect of the random inhomogeneity of the
medium on waves can be seen by comparing %,

with K, and 2%2 _ with W, .. From (3. 55), (3. 36),
(3. 44),(3 47), and’ (3 48), we see that Re(K, . —Fk, )
> 0 and Im (K_ ) > 0. Since the real part o a pro-
pagation constant is inversely proportional to the
velocity of the wave and the imaginary part deter-
mines the damping ratio of the wave, the results
obtained show that the random inhomogeneity cau~
ses delay of the wave propagation as well as atten-
uation.

B. Electromagnetic Waves

VXV XE—w2peE — (Vu/n) XV XE =— jwpd,

(3. 56)
whichis derived from Maxwell's equations, assum-
ing that permeability pand permitivity € are ran-
dom functions of position. We again follow Karal
and Keller's! notations for the average and random
parts of dielectric constant, permeability and con-
ductivity. Then

LE=VXVXE— w2 1+ (u, (¥)e; (XV]E,
(i w? o €[ l‘1(")€1(x»](3. 57)

J.Math. Phys., Vol.13,No. 1, Janvary 1972

L'E=— “’2“050[“1 + e+ uge —(ul(})el(}))E_
—~[Vuy /(L + p)] XV X E, (3.58)

It must be pointed out that the operator L, is dif-
ferent from the operator in the absence of fluctua-
tions, for (3. 57) has an additional term involving
{1, (¥)€, (X)) which in general is not negligible.
Since the random process is assumed to be statis-
tically isotropic, if we denote the correlation func-
tion (4 (X)e, (X )) by ® (1% — #|),then (u, (x)e; (x))
is equal to G, (0). Takmg the pomt of observation
X away from the source region, the Green's dyadic
for L, can be readily!,7 written down as

Gy(x —x') = Gy (Ix — x7 NI+ Goollx — x' )77,

(3. 59)

where
01(7) = — (1 — dkr — k292)etkr/4nk273, (3. 60)
Gy (7) = (3 — 3ikr — k2y2)etkr [4nk2y3, (3.61)
k2 = wlpu €l + (RM(O)]. (3. 62)

Applying L’ defined by (3. 58) on (3. 59), we obtain

L'Gy(X — X') = — wPpg€gfeg + 1y + €4y
— R, (O)]Gy (¥ — X) + [H()/ (L + 1)][Viy 7
— (Y, - M), (3.63)
where
Hr) = (B2/v2)(1 — ikr)eitr, (3. 64)

Using similar notations for correlation functions,
we have

“FXT X

on

(L"(x)Gy(x — XWL'(¥")) = Cy' T + Cy
(3. 65)
where

Cy = 0 UBR(R,, + 28, + G + &, R + BE)G,
o0
+ w2p €2 [(E (u%'» (&, + &)
n=0

+ <§ (@n + 1)(;@@) (@, + &, %E)J

n=0
X Hr)77) — I), (3. 66)
Cy=— wPyey 3 WEM((R) + B+ (n + 1)

X (R ®

" "€+(R'<R )]

TR Y

6 -t 5[5 (5

n=0 \m=0

(W E@EE N oo -
x 2n + 1)(2m + 1) ):\ (7 — 1), (3. 67)
i +1u1 EO = m)™ (3. 68)

Following the same process which led (3. 8) to
(3. 16), we obtain
£11(s) = s2 — k2 — Dy (s),

Dy(s),

(3.69)

£y5(8) = —s2 — (3.70)
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where
0 1 oh s oh
Dy(s) = [clk-cw-—--—Jrcl-—-—
1(8) fo 1 1 o2 3s 2y 3s
1 /e2p 1 ah)]
+ oy = (L2 2 BV gy
<as2 s 3s > 3.7
< s fo3h 1 92n 1 ok
Dy(s) = [_cw_<_., _ 122 +___)
2 fo 203 \3s3 s 3s2 s 282
o2h
+(cl+cp Lo C{?-l—(-———l— i’5)}17'.
y 3s 9s2 s 3s
(3.72)

The superscripts “I” and “»»” denote components
of the dyadics and 1'?' respectively. Here the
Green's dyadics for L, can also be evaluated upon
the determination of the roots of the equations
£41(8) =0 and £,,(s) + £,,(s) =0. It has the form

i 1 . 2 1 .
G (%, %) = 2177 12:3'1 W [Kszzemsz"—ﬁ(—;e”fsﬂ):‘
1 8/1 .. ¥ ~~ 3
—E-w;—w( et Cj”)% —-——7’7’87‘
35 bR B
(3.73)
where P
Wy =2K2% — K, aKl 1(K ), (3.74)
Wcj‘-Kc ( DI(K )+ DZ(KC]>'
(3.75)

The most common and important case is when the
dielectric constant €’ is the only random variable,
Then, from the definition of permitivity! €, we have

® . (7) =(%—:f§;)7;> Gy ), (3.76)

®, (r)=0. (3.77)
Then from (3. 66) and (3. 67)

C, () = wtp3e3® ()G, (3.78)

Co(r) =0, (3.179)

From (3.71) and (3. 72)

1 ok
Dy(s) = whidel [ G (r) (Golh— Go 5= )d ,

S
(3.80)
Dy(s) 1 (82h _1 3h
= wip2e2 [ 2 \3s2 s as
=— wip2ed f; Go2(7) R (7) 72 <832 s 3s
(3.81)
Let ’ 2
- ._.._6.0___.”) (e Yer/a (3. 82)
G{ee(?) - (E' + o /w ! ’

where ais the correlation length of the random
inhomogeneity., Then we can carry out the integra-
tions in (3. 80) and (3. 81) with the help of (3. 82).
The results are

(e k2 %

e’
D, (s) = (..____‘3_._.)
€ + iog/w,

2 32
ksa

s202 + (1 — ik a)?

Ta- :ksa)z [kza 21 =D ( zka)zn

* %}‘ (3.83)
Dy (s) + Dy(s) = 2 < ; +€2%/w>2 (fiiz;:;z [kzaz
o B o () ) e

Now to obtain roots of £,,(K) = 0 in the neighbor-
hood of K2 = %2, upon msertmg (3. 83) into (3. 69)
and performing the iteration under the assumption
of small (¢2) k2a2, we obtain

€3 2
K2 = k2 [1 +(_._-_~__)
€6 + i0p/w

+iik%ad + o(k4a4)]J. (3.85)

i2> k2 [% BZa2

Consider
£11(8) + £4,5(8) = —[%2 + D (s) + Dy(s)] = 0.

(3.86

It can be easily shown that if ka is either very
small or very large compared to unity, (3. 86) does
not have a zero. This implies that the Green' s
dyadic will not have a longitudinal component, Fi-
nally with the insertion of (3. 83), (3. 25) yields

€2
w =2k2[1—————°——-—- k2[x o2 (1 — 1142
s <e(') + ioro/v:u>z\€1 ) Bl e ( )
+ it kad@ — B2) + O(k‘*oz’*)]} (3.87)

When (3. 86) does not have a zero in the complex s
plane, the Green's dyadic G, (7) is given by the
equation

Gy (¥ — %) = (e s /2m3 W)[(1 — iK,r — K202)]
— (3 — 3iK 7 — K2v2)77]. (3.88)

Let us consider the following special cases:

(1) when o is the only random variable,

(2) when ¢ is the only random variable,
(3) when pis the only random variable.

Recalling the relation
e=¢€ +io/w, {3.89)

We can easily observe that

R (7) = — [w™203/(ef + iw™L0y)2]®R,, (7).
(3.90)
Therefore, the form of equations for D, (s) and

D,(s) must be the same as (3. 80) and (3. 81), re-
spectively, but different by a constant which re-
lates G to &, or &, when cases (1) or (2) are
considered,

In the case (3), Cy and C, do not reduce to simple
forms and C2 involves higher-order moments of
the random variable ul(x) Even when the random
process is Gaussian, such series of higher-order

J.Math. Phys., Vol.13,No. 1, January 1972
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moments is very difficult to handle. However, one
can avoid this difficulty by considering the equa-
tion for Hfield,

UXV XH—-wpeH— (Ve XV XH)/e

=V XdJd—(Vex d)e (3.91)
which is of the same form as that of the E field
(3.57). When € is a constant, (3, 91) reduces to
VXVUX H—w2peH=V X J, (3.92)
Equation (3. 92) is similar to the above mentioned
special case (2) in which the effective propagation
constant and (H) can be easily computed. And then
(E) can be obtained from (£} = (jwe)™1V X ( H),

Finally, the average electric field () can be ob~
tained from (3.51)~(3.55) by setting S,, G§4, and
G to zero, In the limits ko < 1 and » 2> o, our
result given by (3. 88) agrees with that obtained by
Tatarski.’ Our D, (s) and D,(s) given by (3. 80)-
(3. 84) have been previously obtained by Karal and
Keller! through a different method.

The effects of the random inhomogeneity in me-
dium parameters can be seen from the differences
between K and % and between W, and 242, It has
been shown that K is a complex number with its
real part larger than k. Therefore, the velocity of
the average wave becomes lower than that of the
wave in the absence of the fluctuation and the wave
attenuates as it propagates away from the source,
with attenuation coefficient proportional to 23a3,
Re(K — k) is proportional to k22, These results
agree with those obtained by Tatarski.5

4., APPLICABILITY OF THE RENORMALIZA-
TION APPROXIMATION
When we rewrite (1.4) in a form

() = [c & 3)FE)dx, (4. 1)

where

G, x) =G (x—x)— [[[[Gi(z— (L' (&)
% GO(}V _ ;11)1,/(}11)(;0(;11 — xII))
C(LI(XUNG, (11T — V) L'(XTV)
X Gl(,}lv —xI) + (L’(a_cn)GO(a—cU — xIII)
x L' (xU0)Gy (I — FIV) (L/(xY)
X Go(#V — XML/ (FV)Gy (x1V — x1))]

X dxildxllldxVdxV + - -, (4.2)

We apply L, (%) to (4.2) and integrate over the x-
space. After the proper change of variables, we
obtain
JL Gax=T— [[[[(L'F)Co(F; —75)L' ()

X G5 — 7N L/ (1,)Gy(ry — 73)

X L'(r )Gy (7)) + (L'(ry)Gy(7ry — 75)

X L’(173)Go(173 — 70 L’(1_'1)GO('F1 - ;2)

X L'(7,)G, (¥, )1ar,drydrady, + -+,
4.3)
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Recalling (3. 8)—(3. 14) and (3. 65)-(3.67), we see
that (L’GOL’GO) can be written in the form

(L '(;1)(;0 (;1 - ;z)L'(;z )Go(;z - ;3))
= 2 [‘Rmn("—’l _;2‘)F?n(;1 - ';2)

) Fg (;2 - —3)]’

where superscript “0” denotes that the tensor
function contains components of G, only. Since in
the previous section we have shown that the
Green's dyadic G, has a form very similar to that
of G, we simply put a superscript “1” on the ten-
sor function F1 generated by applying L’(X) on
Gi(x—X').

We now rewrite (4. 3) in terms of the new expres-
sion given by (4. 4). After introducing the proper
change of variables, we can write the integral term
in (4. 3) in the form

5= ffff [(E &, (IF +1, I)Fe,,(fl)rg(t;))
x<2 ® (I + 1, |)F}n(E2)F1(Z4)>
mn
+<Z) ®,.. (% I)Fe,,(fz)vg(faj

% (E‘“m(lﬁ +7, + L,N)FO () F}’(?‘*))J

(4.4)

x df, di,di,di ,. (4.5)
Let us consider a correlation function
Rl + ) =C e ek (4.6)

Since |f), + 7,12 1, — 4,1, where t; = |7, |and 1,
= {1,|, it follows that

e lirbl/a < e-lt;hl/e for all 7 and 7,. 4.7
We can estimate the integral 9 by inserting cor-
relation functions of the form

BTy, ) = Cpp 711782V (4.8)
into (4.5) for ® . Then we have
s1= SIS [(Z) YRRV AY lzg(?3>|>

x (ﬂz &z (Fy, IS (5y) | 113(Ty) |)

x <Z) &, (7)1 19(5,)] |12(73)l>

x (2 8, B, T I9E) 1) )]

X dt, di,dlydt,, (4.9)
where

Ity = fFi(ts, i=0,1, (4.10)

S denoting the surface of a sphere with radius ¢
and the center at the origin.

The dyadic functions F;;‘ can be reduced to very
simple forms when they are integrated over the
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angular variables. For elastic waves, if p; (¥) is
the only random variable,

19(t) = — (w2/3py) (k2tetke i + 2k21 etst), (4.11)
if A, (x) is the only random variable,

I9(1) = 19(f) = (K4/3py )t ek, (4.12)
I9(t) = (k2/3po)(1 — ik t)eike, (4.13)
and, if u,(x) is the only random variable,

19() = I(1) = (1/3p,)(2kAt ekt + K2teitsr), (4.14)

19(1) = (2/3pg ) [R2(1 — ik Deikst + R2(1 — ik Dekst].

(4. 15)

For the representative case of electromagnetic
waves,

() =— 2 k2 leint, (4.16)
To find the quantity Y such that we may write
(w) = [ G (x— ) F(x)dx'{1 + O[Y]} (4.17)

we insert (4.8) and (4.11)-(4. 16) into (4.9) and
carry out the integration.

When p, (x) is the only random variable,
Y = ((p3)2/pd)wB(R2a2 + Fiat), (4.18)
when X, (x) is the only random variable,

Y =[(aD2w8/ (g + 2p¢)])(k2at + 1/R2a2), (4.19)

and, when u, () is the only random variable,

Y = ((p2)2w8/ud)(Riat + 1/k2a2). (4. 20)
For the representative special case of electromag-
netic waves, we have

Y =(e2)2k2a2(1 + k2a2). (4.21)
When k, @ < 1,from (4.19) the second nonvanish-
ing term of () of the special elastic wave, when
p, (%) is the only random variable, is of the order
Y ={pP2wBk2a?/p}. This means that if k202 is
small enough, the first-order renormalization
approximation is reasonably good even when (p%)
is comparable to p% (so-called “strong fluctua-
tion”). For the other two cases, from (4.19) and
(4. 20) we obtain (A2)Zw8/(A, + 2u,)%k2a2 < 1 and
(12 )2w8/ugk2a? < 1, respectively. These imply
that either the frequency or the mean square fluc-
tuation of the elastic wave must be small enough
for the first-order renormalization approxima-
tion to be applicable. These implications are to be
expected, because the random operator L’ of the
first case contains no derivatives of random vari-
ables and the second two cases do.
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Weaker Versions of Zeeman’s Conjectures on Topologies for Minkowski Space
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In a paper [Topology 6,161 (1967)] Zeeman conjectured that (a) the finest topology on Minkowski space
that induces the one-dimensional Euclidean topology on every timelike line and (b) the finest topology
on Minkowski space that induces the three-dimensional Euclidean topology on every spacelike hyper-
plane have the same group of homeomorphisms G which is generated by the inhomogeneous Lorentz
group and the dilatations. This paper deals with two topologies on Minkowski space which are weaker
than those in (a) and (b), respectively, and have the property that they induce the one-dimensional and
the three-dimensional Euclidean topology on timelike lines and spacelike hyperplanes, respectively. It
is then shown that both topologies have G as their homeomorphism group. Thus, what we have shown
amounts to proving the weaker versions of Zeeman's conjectures.

1. INTRODUCTION

The principle that the topological structure of Min-
kowski space should be such that its homeomorphism
group is isomorphic to the group generated by the
inhomogeneous Lorentz group and dilatations (call
this group G) has led many1—3 to suggest new
topologies for Minkowski space. It is evident that
while selecting a topology for Minkowski space,
there is no reason why one topology should be
given preference over another as long as both
satisfy the prescription above,i.e.,the homeomor-
phism group of each is G. Normally, one would try
to avoid any discrimination and expect that the
infimum and the supremum of all such topologies
having G as their homeomorphism group might be
of significance. It would then seem desirable to
solve the problem of enumerating all topologies

on Minkowski space having G as their homeomor-
phism group.

Indeed this problem is a particular case of a much
more general problem posed by Everett and
Ulam4%-5: Given a group H and a set M, which
topologies on M, have H as their homeomorphism
group? Although a general answer to this question
is not yet given, it seems from the example of
Minkowski space that it would be very difficult to
construct all topologies with the given property.
In the case of Minkowski space, this target of con-
structing all such topologies (at least in principle)
has not been achieved although it seems to be in
sight. Since the cones associated with the indefi-
nite fundamental form are invariant under G, it
would be desirable, as a first step, to construct
topologies which arise in a most natural manner
from the cone structure. This paper is intended
to be a contribution in this direction.

In his paper Zeemanl! conjectured that (a) the
finest topology on Minkowski space that induces
the one-dimensional Euclidean topology on every
timelike line has G as its homeomorphism group
(we call it the time topology) and (b) the finest
topology on Minkowski space that induces the
three-dimensional Euclidean topology on every
spacelike hyperplane also has G as its group of
homeomorphisms (we call it the space topology).
The two topologies we have considered in this
paper, which we have named as the {-topology and
the s-topology, respectively, are weaker than those
in (a) and (b) and induce the Euclidean topology on
timelike lines and spacelike hyperplanes, respec-
tively. Moreover,the homeomorphism group in
each case is G. Therefore, what we have done in
this paper amounts to proving the weaker versions
of Zeeman's conjectures. For convenience, we
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adopt the same notation and terminology as in our
previous paper3(hereafter referredtoas I). Tech-
nically, the proofs are not very complicated as in
the case of fine topology! or the space topology.3

Once again, the tools used in the course of the
proof are only the rudiments of topology.

2. DETFINITION AND PROPERTIES OF THE ¢-
TOPOLOGY

Definition: Let Ni(x) = N5x) n €*(x). The ¢-
topology is defined by specifying a local base l(x)
of neighborhoods at each point x of M as follows:

Nix) = {Ni@x):e > 0}

Let M* denote the set M equipped with the ¢-topo~
logy. One can always define the same topology by
defining a countable local base at each point by
taking rational €'s.

It follows at once from the definition that the -
topology is finer than the Euclidean topology and
hence Hausdorff. It induces the one-dimensional
Euclidean topology on every timelike line and the
discrete topology on every lightlike line, light
cone, and spacelike hyperplane. It is also not diffi-
cult to show that the f-topology is neither normal
nor locally compact. If we define the time topology
on M as the finest topology that induces the Eucli-
dean topology on every timelike line, then, it is
easy to show that the time topology is strictly
finer than the {-topology. Consider, for example,
a sequence {tn} of distinct timelike lines passing
through a point z. Choose a point z, € {,, such
that d(z,,z) > 0 asn » ©. Let Z = {z,}. We shall
show that Z is closed in the time topology. It is
enough to prove that T N Z is a finite set (and
hence closed), where T is any timelike line. Sup-
pose to the contrary that T N Z is an infinite set;
then T being complete (as a metric space), the
sequence of points T N Z must converge to a point
of T N Z,but this point must be z since the space
is Hausdorff. Therefore, T passes through z;but,
then, T N Z is at most a singleton by our choice.
This is a contradiction and our point is proved.
Z° is then open in the time topology (Z° denotes
the complement of Z). On the other hand, Z°¢ is
not open in the £-topology, because any basic open
set N’ (z) in the ¢-topology about the point z will
intersect Z.

3. HOMEOMORPHISMS OF M'

We shall show in this stection that the group of
homeomorphisms of M" is G. In view of Theorem
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1 of 1, it is enough® to prove that every homeomor-
phism of M ' is either <-order preserving or <-
order reversing. We start by proving a lemma.

Lemma 1: Let hve ahomeomorphism of M ‘and
x < y;then there exists a point z € [x,y] such that
either (i) ix < hz or (ii) 2z < hx. Moreover, in
case (i),x < hz’ for all z’ € [x, z] and similarly,
in case (ii), hz’ < hx for all z’ € [x,z].

Proof: h continuous implies that Z~1(N%(hx)) is
an open set containing x. Since sets of the form
N (x) form a local base at x, it follows that, for
some € > 0, N'(x) C - 1(N (hx)) I we choose
z€x,y]ln N‘ iv) then clearly (i) or (ii) is satis-
fied.

To prove the second part of our assertion, suppose
that (ii) is satisfied,i.e., 2 < hx. Assume to the
contrary that kx < hz’ for some 2’ € [x,z]. Let
(x,z] denote the open-closed interval on the time-~
like line passing through x and z. Since the induc-
ed topology on (x, z] is Euclidean, (x,z] is connec-
ted. Therefore z and 2’ belong to the same com-
ponent of N¢(x) — {x} (which is clearly disconnec-
ted and has two components), whereas hz and kz’
belong to different components of the image. Since
k is a homeomorphism, this is a contradiction. A
similar proof applies to case ().

Lemma 2: Let h be a homeomorphism of M!
andx <y,,y,,where y; and y, are on different
timelike lines passing through x. Let z; and z,
be chosen in [x,y,] and [r,¥,], respectively, as in
Lemma 1;then, either (i) kx < hz, and hx<hz, or
(ii) hz; < hx and hz, < hx;i.e.,both 2, and z, are
either mapped to the forward time cone or the
backward time cone at hx.

Proof: Suppose to the contrary that hz; < ix <
hz,. Let 6 <0 be such that 2z; and k2, belong to
Nt (hx) then, there exists € > 0 such that N x) C
h- 1(N‘(hx)) or, equlvalently,h(N (x)) Cc N¢ (hx)
Choosez €,z 11N Ni(x) and 25 € (x, zz] N Nt).
By Lemma 1, hz] <hx < hz,. Note that z; and
z/, belong to the same component of N} (x) — {x},
whereas %z; and kz, belong to different compo-
nents of the image. This is a contradiction and the
lemma is proved.

Lemma 2 implies that % is locally <-order pre-
serving or <-order reversing. That this is glo-
bally true follows from the following lemma.

Lemma 3: Let x <y and z be chosen as in
Lemma 1;then 2x < hz implies ~x < hy. On the
other hand, kz < hx implies ky < hx.

Proof: Due to the symmetry, it is enough to
prove the first case only. Assume therefore that
hx < hz.

For any point p € [x,y], choose z, € [p,v] and
Zy, € [x,p] as in Lemma 1. Since 2z, <p < z,,
it follows from Lemma 2 that either hz <hp <

hz, or hz, <hp < hz (#). Cover [x, y] by the in-
tervals {( A )} p €[x,»]. By using compact-
ness of [x, y], 1t is possible to choose a finite

covering. Thus we get a finite sequence of points

x=p0<p1 <p2<--'<1>"=y.

From our assumption that 2x < hz and the state-

ment (*) above, it follows that
hx = hp0 < hpl < pp2 < -+ -< hpn = hy,

A similar argument will show that if 2z < kx,then

hy < hx. This completes the proof of the lemma.

With the help of Lemmas 2 and 3, one can now pro-
ceed exactly as in the proof of Lemma 11 of I to
show that % is either <-order preserving or <-or-
der reversing, and then a proof identical to that of
Theorem 2 (Sec. 6 of I) together with Zeeman's
theorem? (that the group of <-automorphisms of
M is G) will imply the following.

Theovem 1: The group of homeomorphisms of
Mtis G.

Before we proceed on to the derivation of the group
of homeomorphisms of the s-topology, it is worth-
while to note that the derivation of the homeomor-
phism group of the /-topology is quite straightfor-
ward. This is expected for two reasons. First,the
topology is first countable (it is also second coun-
table) and the basic open sets at each point are
explicitly known. This leads to considerable sim-
plicity in the proof. Secondly, the basic open sets
are directly related to the time cones and hence

to the partial order structure of the set M, Both
points are essential. Indeed, if one drops first
countability—for example, if one deals with the
time topology—then one runs into enormous diffi-
culties and, in that case, the conjecture (a) (Sec.1)
still remains to be proved. The advantage obtained
from the second point is also considerable. It will
shortly appear from Sec.5 that the derivation of
the homeomorphism group in the case of the s-
topology is rather involved (although it is first
countable) due to the simple fact that its basic open
sets are not directly related to the partial order <.

4. DEFINITION AND PROPERTIES OF THE s-
TOPOLOGY

Definition: Let N(x) = N¥(x) n C%(x). The s-
topology on M is defmed by speclfymg a countable
local base at each point x of M as follows:

N(x) = {N x); € > 0 and € is rational}.

Let M equipped with the s-topology be denoted by
MS*. It is easy to see that such a topology is finer
than the Euclidean topology and hence Hausdorff.

It induces the Euclidean topology on every space-
like hyperplane and the discrete topology on every
timelike or lightlike line. However, it is not the
finest topology with this property. For example, it
is strictly weaker than the space topology, which is
defined as the finest topology on M with respect to
which the induced topology on every spacelike
hyperplane is Euclidean (Proof in Sec.4 of I). Like
the t-topology, the s~-topology possesses none of
the good properties such as compactness, norma-
lity, etc.
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5. HOMEOMORPHISMS OF THE s-TOPOLOGY

In what follows, closure of a set A in the s-topo-
logy will be denoted simply by A.

Lemma 4: Let N¢(x) be a basic open set of the
s-topology about the point x and L any lightlike
line passing through x;then, there is a point 2 € L
such that [x,2z] € N:(x)

Proof: Take z € L such that d(x,z) = 3¢; we
claim that [x,z] C N? (x) Suppose to the contrary
that there is a point z’ in [x, 2] such that 2’ ¢
Ne(w) <), Take a spacelike hyperplane H through z’
HNN . () is closed in the induced Euclidean topo-
logy and must contain z’. Contradiction.

Lemma 5: Let h be a homeomorphism of M*
and L a light ray (i.e.,a lightlike line) emerging
from x; then, there is a point z in L with x <.z,
such that kx,z] C CL(hx).

Proof: Ny(x) N L = {x} implies that (N5 (x)) N
hL = {}. Since h(N$ (x)) is an open set containing
hx,it contains a basic open set of the form N (ix)
and, clearly,

Ny(x) N RL = {hc} (1)

Consider now the inverse image of N ; (hx). Apply-
ing the same argument as above, we have € > 0
such that N:(x) C #~1(N;(kx)) or, equivalently,
(NE (x)) C N 3 (hx). Since h is a homeomorph1sm,
we also have

h(N (x))

Choose 2z’ #x in L as in Lemma 4 so that [x,z’] C
N¢ N:(x). Then we have

hix,z'] © (NS (x)) C N; (ix). ()

= W) © NS aw).

From (1), we also have
N3(rx) N hlx,2'] = {ax}. (3)

(2) and (3) together imply that A(x, z’] belongs to

the boundary of the set N3 (hx), where boundary

means the topological boundary, in this case,
N3(hx) — Ni(hx).

It is evident that the boundary of the set Nj(hx) is
a union of two sets A and B, where (i) A consists
of points contained in the light cone at Ax and (ii)
B consists of points contained in the space cone at
kx at a Euclidean distance & from kx. Take a basic
open set N§(hx) about hx with 21 = 6. Now choose
a suitable 7 < ¢ such that k(N {x)) C N;(hx). If we
choose z € Ni(x) N [x,z ],then

hix,z] C h(NG) =H(N3@) © Ny(hx) )
Moreover,
hix,z]C hix,z’]C AU B. 5)

Therefore, from (4) it follows that 2(x,z] C (A U
B) N N‘Z ) C A. Since A C CL(hx), it follows that
klx, z] & C L(hx) and this completes the proof.
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Covollary: Similarly,there existsa 2z’ in L
with 2z’ <, x such that #|z',x] C CL(hx).

The following lemma will show that k[x, z] is con-
tained in a lightlike line through #x.

Lemma 6: Let L and z be as in Lemma 5;then,
hlx,2] C L(hx,hz), where L(hx, hz) denotes the
line passing through the points kx and hz.

Proof: For eachy € [x,z], choose z, and 2!
as in Lemma 5 and its corollary;then, h(z ,2)) ¢
CL(hy). By Lemma 5, we also have h(z y,z')
CL(hx). Thus, h(z z’) C CL{rx) 0 CL{Hy) = L(hx,
hy). Note that [x, z] is compact in the Euclidean
topology and {(z z))}, v € [x,z] is an open cover-
ing of [x,z]. It 1s therefore possible to choose a
finite covermg which would give rise to a finite
sequence of points

J’

X =9y<.y; <9, <0<y, =2,

such that each (z,, 360 %y )) is mapped by % into L, = L
(x,hy). Moreover,”

@,,2) 0 &, ,2,,) =8
for each 7. This implies that,for each {, L, and

Lz+1 meet at points other than hx. Since each L,
is contained in CZ(hx), it follows that

Ll =L2 =L3 = ez Ln =L(hx,hz).

The proof is therefore complete.

Corollary: A similar result also applies to
[x,2’], where 2z’ is determined as in the corollary
to Lemma 5.

Lemma 6 only tells us that for any point p € [x,z]
with x <.z, it is true that either 2x <.7Zp or ap <.
hx,i.e.,the point p is either mapped to the forward
light cone or the backward light cone at 2x. Could
it happen that, for two points p and p’ in [x,z], hp’
<.hx <.hp? To eliminate this possibility, we have
the following lemma.

Lemma 7: I h and 2z are as in Lemma 2, then
there is a point p € [x, 2], such that kfx,p] is either
contained in the forward light cone or the backward
light cone at hx.

Pyoof: Let L* and L~ denote the subsets of
L(hx,hz) contained in the forward and backward
light cone, respectively. Suppose now to the con-
trary that the lemma is false; then, for every p €
[¥,2], hlx,p] meets L* and L™. Since N:(x) N
[x,2] D [x,p] for some p in [x, 2], it follows that,
for every € > 0, h(N:(x)) meets L* and L~;con-
sequently, every Euclidean e-neighborhood of kx
will contain points of L* and L-. Now choose 6 > 0
such that 2~1(N f(hx)) C N5(x). Take a 3-simplex
A3 in Nfs(hx) n H where H is a spacelike hyper-
plane passing through the point 2zx. Choose a point
g € L* N k[x,z] such that the faces of the 4-sim-
plex A% obtained by joining g to A3 are all space-
like. This can always be done by taking g suffi-
ciently near hx in the Euclidean sense. The topo-
logy induced on the boundary A4 of the 4-simplex
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A% is then Euclidean and, therefore,dA4 = S8,
where §3 denotes the 3-sphere. Hence,

gridoh-1:83 = gas BTL pf id | pE

(id denotes the identity map from M° —> M¥),
being a one-to-one continuous map from a compact
space to a Hausdorff space is an imbedding.®
Moreover, by our choice,2~1(A3) C C%(x).

Let A = d{hx,q) and 2p = A. Let v > 0 be such that
R(N;(x)) © N (hx) and let n € N (x) N [x,2]. By
assumption, 2[x,#] meets both L* and L~ and by
construction, 3A4 meets k[x,7] only at the point
hx. Therefore,g(@A4) meets [x,n] only at x. On
the other hand, both components of M* — 3 A4 con-
tain points of k[x,#] or, equivalently, both compo-
nents of g(M® —aA%) = M® —g(3A%) = M® —s3
will contain points of [x,z). This is a contradiction
and the proof of the lemma is complete.

Our next object is to prove that the relation <. is
either preserved or reversed locally by a homeo-
morphism.

Lemma 8: Let L and L’ be two lightlike lines
passing through x, and let p and p’ be determined in
L and L’, respectively,as in Lemma 7, such that
x <.p and x <.p’;then klx,p] and k[x,p’] are either
both contained in the forward light cone at ix or
both in the backward light cone at 4x.

Proof: Suppose to the contrary that k[x,p] is
contained in the forward light cone at #x and
klx,p’] is contained in the backward light cone at
hx. Choose 6 > 0 such that 2~1(N;(hx)) C N.(x)
for some € > 0. It is then possible to choose a
three-dimensional ball B in N:(kx) N H, where H
is a spacelike hyperplane passing through ax, such
that 2=1B C N (x). Choose a 3-simplex A3 in B.
From the arguments of Lemma 7, it is clear that
any Euclidean e-neighborhood of #x contains points
of h[x,p];therefore, choose a suitable g in 2{x,p]
such that all faces of the 4-simplex A4 which is
obtained by joining the point ¢ to A3 are contained
in spacelike hyperplanes. Clearly, the topology in-
duced on the boundary A4 of the 4-simplex A4 by
the s-topology is Euclidean,i.e.,dA% is a homeo-
morph of S3.

Now M® — 3A4 has two components. Let U be the
interior component of MZ — 3A4, then U meets
hlx,p] and does not meet k[x,p’]. Without loss of
generality, one can assume k(x,p] C U or, equiva-
lently, (x,p] € k~1U. Moreover, as in the case of

Lemma 7,the map g = id° k™1,
= -1 i
g:S3=apt kT e 1Ay 8

is an imbedding. Therefore,g(?A%) is a homeo-
morph of S3. By our choice,g(A3) is contained in
CS(x);it is therefore clear that g(?A4) will meet
{x,p’] and, consequently, gU will meet (x,p’]. This
is a contradiction which proves the lemma.

Corollary: A similar proof will imply that if
p <.x <.p',then hp <.hx <.hp' or hp' <.hx <.hp;
in other words, if p and p’ are oppositely oriented
with respect to <.,then kp and kp’ are oppositely
oriented with respect to 2x.

Remark: The procedure of constructing a 4~
simplex A4 and making a disconnection by g(A4)
in Lemmas 7 and 8 is the same as in the case of
fine topology.! It has only been adapted here to
the case of M°®.

We are now in a position to prove that the order
relation < is either preserved or reversed by a
homeomorphism of M*®.

Lemma 9: Letx <y and £ a homeomorphism
of M¥;then either hx < hy or hy < hx.

Pyoof: Take a point p € C L{x) such that x <.p
<.¥y;then [x,p] U [p,y] is compact in the Euclidean
topology. Moreover, at each point of [x,p] U [p,¥],
the relation <.is either preserved or reversed.
Therefore, using Euclidean compactness and Lem-
ma 8, one has kx < hy or ky < hx. [The procedure
is exactly the same as in the case of Lemma 3
(Sec. 3)]. This completes the proof of the lemma.

Now, repeating the same procedure as in Lemma
11 and Theorem 2 of Sec. 6 of I, one can easily
prove the following:

Theorem 2: The group of homeomorphisms of
M®isG.
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Lattice Green’s Function for the Orthorhombic Lattice in Terms of the Complete
Elliptic Integral
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The real and imaginary parts of the orthorhombic lattice Green's function at the origin are expressed
as a sum of simple integrals of the complete elliptic integrals of the first kind. In order to give the
expressions for all values of the variable from — «© to + ®, use is made of the method of analytic con-
tinvation. The results of the numerical computations are shown by figures.

1. INTRODUCTION
We consider the lattice Green's function at the

|

origin for the orthorhombic lattice (a:b:c = 1wy,
o = f§ =1y = 90°) with arbitrary v, y,, and y;:

) (1.1)

_1 g T T 1
G(t)—ﬂ3 defodyfodz

where { = s — 7 ¢; s takes on real values and ¢ is
an infinitesimal positive number, This integral
is an even function of y,,y, and y; and hence we
may assume that all of y,,y, and y3 are positive
without loss of generality, For the simple cubic
lattice, all of 4, y, and y3 are equal to unity, and
for the tetragonal lattice, any two of them are
equal to unity and the other is arbitrary. The
function (1.1) for these lattices was expressed as
a sum of simple integrals of the complete elliptic
integral of the first kind, by Morita and Hori-
guchi.1>2 For the rectangular and the square
lattices, the lattice Green's function were studied
by Katsura and Inawashiro,3 using the Mellin~
Barnes type integral at an arbitrary lattice point.
At the origin, the Green's functions for these
two-dimensional lattices were expressed by the
complete elliptic integral.3,4

We shall consider (1.1) for —~o < s < @, Func-
tion (1.1) is real at s = y; + y, *+ y3. For this
region, the function G(¢) is readily expressed as

an integral of the complete elliptic integral of the
first kind, by using the expression of the rectan-
gular lattice Green's function, given in a preced-
ing paper of two of the present authors.4 The func-
tion defined by (1.1) as a complex function of the
complex variable ¢ is analytic on the whole com-
plex ¢ plane, excluding the real axis from

—(yy *yy ty3) toy; +y, +y5. Hence an ex-
pression of the function G(¢) on the whole ¢ plane
can be attained by the procedure of the analytic
continuation from the above-mentioned expression,
which is useful at s > y; + y, + y3.

In Sec. 2, in order to make our discussion self-
contained, we give the expressions for the com-
plete elliptic integral of the first kind and its
analytic continuation! at the values of modulus on
the real and imaginary axis in terms of the com-
plete elliptic integral of modulus between zero and
unity. In Secs. 3 and 4, they are used to express
the real and imaginary parts of G(s — i¢) at all the
real values of s from — © to + ®. The resulting
expressions have the form of a sum of simple inte-
grals of the complete elliptic integral of the first
kind. The results of the numerical calculation are
shown by figures.
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2. THE COMPLETE ELLIPTIC INTEGRAL OF
THE FIRST KIND AS A COMPLEX FUNCTION
OF THE MODULUS1

The complete elliptic integral of the first kind K(k)
as a complex function of the complex modulus % is
defined by5
/2 1
K(k) = df ——————.
(&) fo VI =2 sin29

This function is an even function of % and K(&*) =
K(k)*. As a consequence, K(%) is real when % is
pure imaginary. The expansions in powers of &2
and &’ = (1 — k2)1/2 are given, respectively, as
follows:

Kk =7 3 <(—)">2 k2n,

n=0 nt

(2.1)

(2.2)

K(k) = — % K(k')Ink’

+ 2(%—,)'?2 (W +1) —yn + 3)]k'27,  (2.3)
where ’

(2),=T( + 3)/T(F), W) =TI'(2)/T(2).

The function K(%) has branch points at & = + 1.
Expressions (2.1)—(2. 3) are analytic on the Rie-
mann surface excluding the branch cuts connecting
+ 1 and + © and — 1 and — «, respectively, on the

(26)})(2.6)

(2.5) (2.2) {2.2) (24)
-1 0 ]

FIG.1. Complex k plane. The bold solid lines
between 1 and +« and —1 and —w denote the
branch cuts for the complete elliptic integral
of the first kind. The numbers of the equation
useful at each portion near the axis are refer-
red to.
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real axis. We call this part of the Riemann sur-
face as the sheet I. In the following calculation, we
need only the function just above the real axis and
along the imaginary axis on the sheet I, and do not
need its analytic continuation to other sheets
through the cut. The sheet I with the branch cuts
connecting +1 and + and —1 and —« and pos-~
sible values of £ occurring in Secs. 3 and 4, are
shown in Fig.1. Expressions (2.1)-(2, 3) are
valid on the sheet I. Equation (2. 2) is used on the
real axis k = k; + ie, where k| <1 and € > 0.
The function just above the real axis k = &, + i¢,
where |kR| > 1 and € 2> 0,is given from the one at
|kl < 1 with the aid of the formula

K(k) = [K <%> +iK <-f‘/—2—__k:lﬂ , (2.4)
where &y > 1 and
K(k) = _I%T [K@ —iK (ﬁf—_k:-l)] (2.5)

where k, < —1.

The function on the imaginary axis k =+ € + ik,
where € > 0 is given as

K(ik) = (1 +£2)"1/2 K[k, (1 + k3)-1/2).  (2.6)
In the following section, (2, 4)-(2. 6) are used in-

stead of (2. 2) according to the value of the modulus
k.

3. ORTHORHOMBIC LATTICE GREEN'S FUNC-
TION; FORMULAS I

The Green's function defined by (1.1) is real at
y1 T ¥2 T ¥3 = s and is readily expressed from
the previous paper4 in terms of the complete
elliptic integral of the first kind as follows:

G(t) = ﬁ fo" dx PK(E), (3.1)
h
i dygvs I
—<(t — 1y €08x)2 — (y3 — 72)2> . '

We note that the expression (3.1) is valid on the
whole complex ¢ plane. We put ¢t = s — ie, where s
is a real variable and € is an infinitesimal positive
number,

When y; +y4 +y3 < s,k is real and lies between 0
and 1, and Eq.(3.1) is appropriate for the numeri-
cal calculation.

The function G(s — i€) is complex at
—(yy T yg +¥3) <s<y; +9yy +33. We denote
the real and imaginary parts as Gg(s) and G(s),
respectively,

G(s —i€) = Gg(s) + iG/s). (3.3)
One can easily confirm that Gg(s) is an odd func-
tion of s and G,(s) is an even function:

Gp(—s) = — Ggls), Gf—=s) = Gs), (3.4)
for instance, with the aid of the definition (1.1).
Hence we have only to consider the range

GREEN'S FUNCTION 11

0<s <y, +yy +ysin the following. The for-
mulas for this range are derived from (3. 1) with
(3.2) by the analytic continuation. In (3.1) with
(3.2),y, and y5 are symmetric and hence we
assume that y, < y; without loss of generality in
the following. The derived formulas are different
according as y, is larger than both of y, and y4
or less than them or between them. We shall give
formulas separately for these three cases:

(1) 0<7’1<7’2<7’3v

() 0< yy <y3<yy,

(II) 0 < yy < yq <wya.
The results obtained for each case specified by
inequalities between 4 's are valid also in the limit
when the inequalities are replaced by equalities,
though the equality signs are not written explicitly.

The same applies for the other cases considered
in the following.

In this section, we consider Case (I). It consists of
two cases,y3 < y; T yy and y; + y, < y5. We first
consider the former.

Case (1A): 0<y; <y, <yz<yy +yytkde-
fined by (3. 2) takes values on the ranges
0<k <],
1<k < + o,
k =ik, k, is real,
—0olk< -1,
—- 1<k <0,

according as

y3 tys <s—yycosx < +®,

¥3— Y2 <SS =y c08x < yy tyy,

Yo —v3 <S8 —y; cosx < y3 —vy,, (3.5)
—ye ~¥3 < S~y co8x < yy v,

—0 s —y, cosx < —y, —yg,
respectively. In Fig. 1, the expressions useful for
K(k) in the respective regions are shown, The
regions satisfying the above inequalities are shown
in Figs. 2, 4, and 6, according to the relative mag-
nitudes of y,,y,, and y,, where the above five
regions correspond to the regions which are
above the line (x = x,),
above the line (x = x,) and below the line (x = x,),
above the line (x = x3) and below the line (x = x,),
above the line (x = x,) and below the line (x = x ),

below the line (x = x,),

respectively. The values of x between the regions
are given by

%y = co8”L [(s —y3 ~v2)/71)s (3.6)
Xg = cos~1 [(S —%¥3 + ’)’2)/'}’1]: (3-7)

J.Math, Phys., Vol. 13,No. 1, January 1972



18 HORIGUCH]I,
x3 =cos™L [(s +y5—y3)/v1),
x4 = €087 [(s +y3 +y3)/v1]

For the present case, we have Fig,2(A). For a

fixed value of s, an integration is taken over x
from 0 to 7, when cosx varies from +1 to —1.

Considering the figure, we subdivide the present

(14) ’ {18)
| (|)

]. 7+7+7 L———

Y cos X

(x=7)
/’ (X=0)

FIG.2. Figures showing the regions satisfying the inequali-
ties (3.5), for Cases (IA) and (IB), respectively.

(i) {ii)

rX|0

YAMAZAKI,
(3.8)
(3.9

{x=0)

9%, -

| X2

(i) . (iv}
. 0
!
) 4 [} 1 4 X2
) ) -1 o0

1o

FI1G.3. Complex & plane for Case (I). The values of x,,x,,
and x, are given by Eqs. (3.6)—(3.8).
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case as follows:

()  yztya—y; <s<yztyytyy,
(111 yg—yy *y1 <s<yztya—ry,
(iv) —yg tyy tr1 <s<yz—ry tyy
(v) 0<s < —yg tyy, +vq.

We notice that, for the values of s belonging to
Case (ii), we have regions for 0 < 2 < 1 and
1<k < +oaccording asx; <x <7 and

0 < x < x,;for s belonging to Case (iii), we have
only one region where 1 < k2 < + @ for 0 < x < m;

and so0 on.
for the respective case. The formulas appro-

Figure 3 shows the values of & taken

priate for K(%) at the respective ranges of k are

found from Fig.1. Applying the formulas (2. 2) and
(2.4)-(2.6) of K(k) in (3.1) for the respective
ranges, one obtains the following formulas:
Case (ii):
GR(S)
"zr— [f‘ dx K() f dx kK(k)] (3.10)
and
1 1 k2 —1
G (s) = —— de(V ). 3.11)
! m2Vyay3 f; k (
Case (iii):
Gals) = ——— [ ax K[+ (3.12)
m2Vy273
and
1 U ke — 1
G, (s) = ——— de( > (3.13)
! 12Vyg7s fo )
Case (iv):
1 u 1
Go(8) = ———— dx K(——) (3.14)
R 12Vygv3 fxz kE
and

G/s)= fxzdx i K i
112\/—__ VI+RZ \VI+%2

P,
%
where
b o=— ik = 4y27s \1/2.
(v3 — 72)2 — (s — vy cosx)2) 3
Case (v):
Ga(s)
I S 1 " 1
h T2Vyav3 { j:adx K(Ikl) * dex K<k>:13
and
v 1 VEE =T
Gle) = 2Vyav3 {j:* = K( |2 >
.k k,
* jx:zdxﬁ +k?K<J1 +k§>
n VEZ =1
dx K . 3.
< [aex( T <

15)

16)

.17)

18)
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Case (IB): 0<+y; <y, <y; tyy<yz For
this case, inequalities (3.5) are shown in Fig. 2(B).
From this figure, we see that the subdivisions for
this case are

(i) y3tys—y1 <s<yztyytyy,

(111)y3 —vYq +-y1 <s< Y3 +'y2 ~ Y1

(V)ya—va—v1<s<yz—vya tyy,

(v) 0<s<yz—vz—7r1
The values of 2 for the respective cases are
shown in Fig. 3. For Cases (ii), (iii), and (iv'), we
have Eqs. (3.10) and (3. 11), Egs. (3.12) and (3. 13),

and Eqgs. (3. 14) and (3.15), respectively. For Case
(v'), we have

Gp(s) =0
and

(3.19)

1 u k, k,
= — . .20
640 i Lo <) 009

4. ORTHORHOMBIC LATTICE GREEN'S
FUNCTION: FORMULAS II AND I

We consider at first the case in which y, is larger
than y, and y, and then we have 0 <y, < y3 <1y;.
The formulas are given separately for the two
cases,i.e.,y; <y, T yzand yy +y5 <yy.

Case (IA). 0< yy <y3<y; <yy +ys: The
inequalities (3. 5) are shown in Fig. 4(A) for this
case. Now subdivisions are as follows:

(1) yz—ya ty1<s<yzt+yy tyy,
(i) —y3 +yg +y1 <s<yz—yy tyy,
(iv) ystrys—r1 <s<—y3tys tyy,
(v) 0<s<yz+y,—y;.

The ranges of & for the respective cases are
found from Fig.4(A) and shown on Fig.5. The
values of x,,x,,x5,and x, are given by (3. 6)~
(3.9). For Case (ii), we have Eqgs.(3.10) and
(3.11), for the real and imaginary parts, respec-
tively, For Case (iii), one has

-1 _Im N, r
Ggls) = N s {jx: de<k>+ fﬁdx kK(k)] (4.1)

and

Gfs) = 1 dx i K( i
ﬂzv‘)/z'}/s 0 '\/1 + kP ‘Jl + EIZ

+ j:dx K(szk— 1)] (4.2)

For Case (iv), one has
Gg(s)

~ 1 [ Pak(L) s Pax(t
"l el ey

+ [ ax kK(k)} (4.3)

and

1 EZ —1
o0 = b | L)
k

Ry T
" /: & V1 + k2 K<Jl + k%)
o [ arxf®).
*2

For Case (v), one has

1 3 1 i 1
izt e o

(4.4)

and (4.5)
1 3 k2 —1
=—=1|[%dx K
Gie) m2vyo73 [/: y < || >
kI kI
’ C “ V1 + %% K(Jl + k§>

(4.6)

+ ‘de K< k - lﬂ

FIG.4. Figures showing the regions satisfying the inequali-
ties (3. 5), for Cases (IIA) and (IIB), respectively.

{ii) | (i)

i X2
1 0
r X 0 X \x
-0 -too
{iv) X3/ X, V) XX
X[ 0 X \x xi[ o sz
-l 0 ! -1 0 |

vl X5 X,

X3 X0 |7 X X
-1 0 ]

FIG.5. Complex % plane for Case (II). The values of x;,x,,
x3,and x, are given by (3. 6)—(3.9).
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20 HORIGUCHI,

Case (IIB): 0< Y2 < Y3 < Y2 + Y3 < Vi+ For
this case, the inequalities (3. 5) are shown in Fig.
4(B). Now the range 0 < s <y, + 1y, *+ y5 is sub-
divided as follows:

(ii) 'y3——72+-y1<s<-y3+-y2+71,
(iii)—'ys +')/2 +'y1 < S < Y3 — Y2 +'}’1,
(iV')-—y3-—'y2 +-y1 <s <—'y3 +-)/2 + Y1
(v') 0<s<—-y3——72 +yq.
Figure 5 shows that, for Cases (ii), (iii), and (iv'),
the values of k2 are restricted to the same regions
as corresponding cases (ii), (iii), and (iv) of (IIA),
and one obtains the same expressions (3.10) and

(3.11),(4.1) and (4. 2), and (4. 3) and (4. 4), res-
pectively.

‘(IIIB) SH
(i)

| Bt 7+

(Xx=0)

% cos X % cos X

A (x=0) (X7 )
(x=7) ,T’@

FIG.6. Figures showing the regions satisfying the inequali-
ties (3.5),for Cases (IIIA) and (IIIB), respectively,

(ii) (i) X,
0
A X| Xz
5 =10
(iv) (v) Xs| X,
X3 T )X

(i) X, ()

—t

I -1 0| |

FIG.7. Complex k plane for Case (Ilf). The values of x,,x,,
and x5 are given by (3.6)-(3.8).
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For Case (v'), one has

1
Gy(s) =m[— _g‘dx EK([%])
1 1 1
- [l Ly
+ fdx kK(k)} 4.7
and

Gls) = "2—‘/}172__—7/; [j:‘ dx K(__Jelkl—l’

k b
* CZ e K(J1 +k§>
#me@%:%. (4.8)

In the next place, we consider the case in which y,
is smaller than one of y, and y 4, and larger than
the other, We assume that y, <y ; without loss of
generality, and hence we have 0 <y, <y, <y,.
The formulas are given for the two cases,

y3 <yp tyg andy, +y, < yj, separately. Figure
6 shows the inequalities (3, 5) for these cases.

Case (IIA): 0< Yo < Y1 < Y3 < Y1 + Yol By
Fig. 6(A), we see that the subdivisions for this
case are as follows:

()  yz—ya ty1 <s<yztys tyy,
(i) ygtyy—yi <s<yz—yz tyy,
(i) —yz tyy tyy <s<ygtys—vy,
(v) 0<s<—yz+yy ty;.

The ranges of 2 for the respective cases are
shown in Fig.7. For Cases (ii), (iii), (iv), and (v),
we have Eqgs. (3.10) and (3. 11), Egs. (4.1) and (4. 2),
Eqgs.(3.14) and (3.15), and Eqgs. (3.17) and (3. 18),
respectively.

Case (IB): 0<y, <y; <y; tyy <ys: By
Fig. 6(B), the range 0 < s <y, +y, +y5 is sub-
divided as follows:

(1) yzg—yg ty1 <s<yztyy tyy,
(1ii) yg tyy —yy <s<yz—vy tvy,
(iV)yg—ya—v1 <s<yztyy—vy
(v") 0<S<-y3——y2—'y1.

The ranges of k for these cases are shown on Fig.
7. They show that the formulas for Cases (ii), (iii),
and (iv') are the same as the ones for Cases (ii),
(iii), and (iv) of (II1A), respectively. For Case (v'),
we have Eqgs. (3.19) and (3. 20).

5. RESULTS OF NUMERICAL COMPUTATIONS
AND REMARKS

We easily see that Eq.(1.1) is symmetric for the
exchange of three parameters y,, y,, and y,.
Therefore, we expect that formulas (IIA) and (IIIA)
give the same results as formula (IA) when the
parameters 4, y,, and y3 are interchanged in their
roles. The situation is the same for formulas (IB),
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(0 , ; , ,
(Y, %,7)
6, =100,10,10)
05
6p
00 ). i i
0 I 2 3 4 5 6
s

FIG.8. The values of the lattice Green's
function at the origin,G (s — i€), for the ortho-
rhombic lattice. Parameters y,,y;,and y3 are

0.0,1.0,and 1.0. G,and G,indicate the real and

imaginary parts,Gp(s) and G{s), respectively.

(yl’ 2 ”3 )
10—t = (05,10,10) —|
Gl
G\R

0.5
0.0 ‘ ' : ‘

0 I 2 3 4 5 6

s

FIG.9. Gg(s) and G(s) for the case where
(71,72,7/3) (0.5,1.0,1.0). Cf.the caption

Fig.8.

1.0 T T T

] 0, %, %)

=(10,10,1.0)
GR
05
GI

oo 1 e 4

0 ! 2 3 4 5 6

FIG.10. Gg(s) and G/(s) for the case where
(y1s72,73) = (1.0,1.0,1.0). Cf.the caption of
Fig. 8.

1.0 T T
(X%, n)
| 100,10, 15)
&
05 \\\
GR
00 ' : ‘
0 ! 2 3 4 5 [
S

FIG.11. Gg(s) and G,(s) for the case where

(71’7'2773) =
of Fig. 8.

(1.0,1.

0,1.5). Cf.the caption

05—

, I ,
h, %, %)
=(10,10,20)

N

L L

0.0 .
0 |

2

3 4 5 6

S

FIG.12. Gg(s) and G/(s) for the case where

('yl,'yz,'ya) (1.0,1.0,2.0). Cf.the caption of
Fig. 8.
1.0 T T T
(711 yz ] 73 )
=(1.0,10,30)
05 G

00
0 |

FIG.13. Gy(s) and G(s) for the case where
0,1.0, 3 0). Cf.the caption of

(71,“/2,73) fl
Fig.8
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1.0
T T T 1.0 T .
1
RERANROE O, %, %)
=(00, 1.0,20) ={05,10, 15)
6|
6 Gq
05—+
h >
0.0 1 i
00 . . , 0 ! 2 3 4 5
0 | 2 3 4 5 6 S
S FIG.168. G(s) and G,(s) for the case where

FIG.14. G,(s) and G, (s) for the case where

lr1,¥2,73) = (0.5,1,0,1.5). Cf.the caption of
Fig.8.

lyy,¥2,¥3) = (0.0,1.0,2.0). Cf.the caption of
F

ig. 8.

1.0 T ‘ T T 1.0 T T T
(7,,’2,73) Q (7|’72’73)
={02,10,18) ={08,10,12)

6,
/f\ Gp Gp
0.5 )< 05
0.0 " L L s n L
0 2 3 4 5 6 0'00 1 2 3 4 5
S S

FIG.15. Gg(s) and G;(s) for the case where

FIG.17. G,(s) and G,(s) for the case where

(y1,72:73) = (0.8,1.0,1.2). Cf.the caption of

(y1»¥2s75) = (0.2,1.0,1.8). Cf.the caption of
d Fig. 8.

Fig. 8.

As noticed for the cases of the simple cubic and
tetragonal lattices, the expressions for the Green's
function along an axis are obtained simply by
multiplying the factor cosix to the integrands of
all the integrals occurring in our formulas. Here
we must notice that all the formulas (I), (II), and
(III) are needed for the calculation of the orthor-
hombic Green's function along all of the axes.

(OB), and (IB). In fact, we can confirm those
facts by numerical calculations. However the
numerical calculations of formula (I) are found to
be less laborious than those for formulas (II) and
(III). The curves of Gg(s) and Gy(s) are shown in
Figs. 8-17 for a number of sets of parameters y,,

vg,and yj.
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On Representations of the Conformal Group Which When Restricted to Its Poincaré or Weyl
Subgroups Remain lrreducible

J. Mickelsson* and J. Niederle
Instilute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, Prague 8
(Received 20 October 1970)

Unitary irreducible representations of the conformal group which, when restricted to its Poincaré

or Weyl (= Poincaré group extended by dilatations) subgroups, remain irreducible are found. In parti-
cular it is proved that the continuous spin representations (p +p# = 0) of the Poincaré group cannot be
extended to the conformal group and that, on the other hand, a known extension in the discrete spin case
is unique (up to a unitary equivalence). Similar results hold for Weyl group for which, in addition,
extensions also exist in the case p ¢ *pt # 0. Namely, each unitary irreducible representation of the
Weyl group characterized by the sign of p u =p# (#0) and by invariants of the corresponding little group
can be extended to a one-parameter family of irreducible representations of the conformal group.
Finally, it is shown that, besides the above mentioned extensions of unitary irreducible representations

of the Weyl group, there are no others.
1. INTRODUCTION

In elementary particle physics, there has been a
renewed interest in the conformal group.1—8 The
main motivation for it comes from the following
features of the conformal group (which are, how-
ever, closely related to each other):

i) The conformal group is the lowest dimension-
al semi-simple group containing the Poincaré
group. Hence, it may be considered as a poss-
ible candidate for a generalization of the
Poincaré group.2

Since it is locally isomorphic to SO(4, 2) or
SU(2, 2) which contains various 'physical
groups [e.g. SO(4, 1), SO(4), SO(3, 1), SO(2, 1),
etc.], it serves as a spectrum generating
group for hydrogenlike atoms and a successful
model in hadronic spectroscopy as well.3

(ii)

(iii) It is the largest group preserving locally the
light cone and thus an exact space-time
symmetry group for massless particles.4

(iv) The conformal group appears to have relev-

ance also to massive particles. Based on our

interpretation of five generators (in particular

a dilatation) which in addition to the Poincaré

generators form a Lie algebra of the con-

formal group, it may be treated either as an
approximate symmetry groups.9 or as an

exact symmetry group. 6,10,

The last two aspects of the conformal group give
rise to two problems in field theory—a rigorous
definition of conformal invariance of field equa-
tions and a classification of the conformally in-
variant field equations. These questions were
discussed in Refs. 7 and 8, where conditions under
which the various equations are conformally
invariant were derived. In our work we solve a
related problem. We find unitary irreducible
representations of the conformal group [SU(2, 2)]
which remain irreducible when restricted to the
Poincaré group @ (see Sec. 2) or the Weyl group
W (Sec. 3)11_the largest group which maps (one-
to-one) Minkowski space into itself preserving
the causal order of vectors. This is necessary in
order to classify all conformally invariant field
equations in whichthe field transforms irreducibly
under the Poincaré or Weyl group.

2. IRREDUCIBLE REPRESENTATIONS OF
SU2,2)! @

We have already mentioned that the conformal
group is locally isomorphic to group SU(2, 2).

23

Various classes of irreducible representations
(IR) of SU(2, 2) have been studied;!2 however,
there is no complete list of all. On the other

hand, such a list exists for the (proper orthochron-
ous) Poincaré group ®.13 Thus inorder to find all
UIR's of SU(2, 2) which when restricted to ® are
irreducible, we proceed as follows: We take a com-
plete list of UIR's of ® and show which of them can
be extended to UIR of SU(2, 2)—that is we prove

in which cases there exists extra operators acting
on our carrier space of IR of ® such that they can
be identified with the generators of SU(2, 2).

First let us remember that the Lie algebra of
SU(2, 2) is given by:

[Mn M, ]
= (g, My — &, Mry — BnMy, + 8, My, ),
2.1)
[P, P] =0, (2.2)
[R,M,,] =ilg,,P, —&,,P), 2.3)
K,K,] =0, @.4)
(K, My =ilg, K, —g,,K,), (2.5)
K,,P,] =2ilg,D~M,,), (2. 6)
[D’Mpll] =0, 2.7)
[0,P] =ip, (2.8)
[D.K,] =—iK,, (2.9)

Here, M, U(Mp b= —M,,“) and P, are generators of
the Poincaré group ®, which together with a dilata-
tion D and special conformal transformations K
form the Lie algebra of SU(2, 2).14 Because of the
relation eialP sPueg-i2D = ¢g=24P <Pk (g real),

it is clear that representations which are irreduc-
ible under both ® and SU(2, 2) cannot be charact-
erized by an eigenvalue of invariant P, Py which
is different from zero. Thus we may restrict
ourselves on representations of ® with P *P# =
m2 = 0.15 There exist twenty classes of IR's of

® with p *p# =0 and b, 0.13 They are character-
ized by flour or five invariants as shown in Table 1.
Here, W, is the Pauli-Lubanski vector (W =1

€, upo MYPP), w wt is an invariant of the little
group E(2), S 1s a sign of energy (S; = (Py/ | Py |)),
Sy is analogously a sign of the eigenvalue W,
r(;?ated to the second invariant of E(2),and |A| is
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TABLE I. Irreducible representations of ® with b pr = O,pu = 0.

Invariqnts Representa-
Class por, 1, =0 w, wh S S"'o il Sy tion of @
0,1,2,---,0r
1-8 0 0 £1 £1 33, — unitary
9-12 0 j > 0,j-real 1 — — +1 unitary
13-16 0 —j < 0,j-real E3 1 —_ — +1 non-unitary
17-20 0 a, a-complex £1 - — +1 non-unitary

a fixed proportionality number, W = [ [P . If |x|
: ; . p Bt

is an integer or a half-integer, the corresponding
representation is single- or double-valued, res-
pectively. In the case w w# # 0, the IR of @ is
characterized by four invariants. It may again be
single- or double-valued depending on the sign of
Sy = ¢ mwMy e21rzM2 — ezm 3, Mi — % Ei]kjwjk
—namely, if §,, is +1 or —1, respectively. IR of ®
characterized by ppr =w wt = 0 are called mass
zero ‘discrete spin’ representations. The repre-
sentations p p* = 0 and wwk = j >0 are analog-
ously called“ ‘continuous spin’representations for
the massless case.

If the mass m2 = p pr = 0 there is still another
possibility. Namely p is a null vector, i.e.,
b, = 0. In this particular case IR's of @ are
characterized by two invariants of the Lorentz
group SO(3, 1)13: M2 — N2 and M*N,16 that is by a
pair of numbers (k,, c) where Ie(i =0, (1/2), 1, (3/2),
- and ¢ is a complex number.17 These repre-
sentations are unitary (o-dimensional) if either
¢ is pure imaginary and 2, = 0, (1/2), 1, (3/2), - - -
(principal series)or 1> ¢ 2 0,c realandk, =0
(supplementary series).

A. The Continuous Spin Case

A complete basis for IR of ® characterized by
pp+ = 0, b, ® 0, and w, wH =j> 0is given by
vectorsl8

|P, 7\>,—°0<[)i <®: p2 = 0))\ = 0’ il, 12, c+e Or

x = £(1/2), £(3/2), - - -, with the scalar product
®, ) 1p,\) =2[pl38 ;6% (—p)
Consider commutator (2. 6):

[Kl,P].] = —Zi(clf.D + Mlj). (2.10)
From the explicit formulas for the generators
given in Ref. 18, we see that M,, and M, ; are
diagonal in A. Because of (2. 7} there is a basis in
which D and M,; are diagonal in A, Since B, are
diagonal in 1, it follows from (2. 10) that the opera-

tor [K,,f(P)], where f is a function of P, is diagonal
in A. In particular, f (P) can be taken as

f®) =@ +p2+Prz=p,
On the other hand from Eq. (2. 6) follows
[Kl,PO] = —2iM, ,-

Since, according to Ref. 18, M, , connects states
with A differing by 0 and +1 we get

[Kq, Pol * [K1, (P + P} + Py)Lr2).
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The conclusion is that there exists no representa-
tion of SU(2, 2) which, when restricted to @, is
UIR of ® with continuous spin.

B. The Discrete Spin Case

In this case p pt = m2 =j = 0. Moreover, the
helicity A is fixed in UIR and equal to 0, =1, £2,-- -,
or +1/2,+3/2, <+ -, Thus our basis of IR is only
labeled by p;. It is well known that these repre-
sentations of ® can be extended to the most degen-
erate discrete series of UIR of SU(2, 2).19 Let

us show here that such an extension is unique.

Thus suppose there exist two extensions and that
the corresponding five extra generators of SU(2, 2)
are K“, D and K’,D’, respectively. The most
general action of the dilatation subgroup consistent
with the commutation relation is

gad|p> = ¢iat|gap > (2.11)

where ¢ is a constant which is real in UR. It then

follows that the operator D’ — D is also a con-

stant (times a unit operator). Let us denote
D'=D +{ Ap =K:1 —K“

and let us show that necessarily D’ =D and K|, =
K,. From expression (2. 6) we have

|- [Kp Pl =0.

40 P) = Ko P,

The operator A, is therefore diagonal in p and we
may write

Aglp> =fp)Ip> or A, = f(P),
where f(P) is an operator valued distribution in P.
Since

[Ao’ Mij] =0,

then f(P) = f(P), where P = (P*P)1/2 = zP,.
Further, from commutation relations we get

@'l et A, eP|p) = e (p'|AyP)
= e~ f(p)2p35(p’ — p)
or according to (2.11)
(0’ le~#P A, €eP|p) = (e®p’ |Aylep)
= fle®p) 2p35(p’ — p).
Thus comparing rhs of the last equations we obtain
fleap) = e~2f )

so that f(p) = b/p, where b is some constant. From
commutation relations (2. 1), (2. 5) we have
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[M()j) [Moj, b/P]] :[MOj![MOj!K:D —KO]]

=—i[M;, K} —K;] =K/, +Koy=—b/P.

The lhs of this equation can be calculated by using
the explicit form of M; given in Ref. 18. The
result is

— (b/P) + (2bP%/P%).

Both expressions are not in contradiction only for
= 0, that is, if K{; = K. Commuting this with
M, one sees that K; = Kj, too.

Finally it follows from
2iD’' = [K{, Pyl = [K ¢, Py] = 2iD

that D’ = D. We conclude that a given mass-zero,
discrete spin representations of ® can be extended
to IR of SU(2, 2) in one and only one way.

C. Null Vector Case

The fact that the Ul representations of the Poincaré
group with ppr = 0 and p = 0 cannot be extended
to representations of the conformal group is a tri-
vial consequence of the simplicity of the latter.20

Finally let us remark that in the last two sections
we have not used the integrability of special con-
formal transformations K . Therefore, we have
proved an even stronger result.

Theorem: The only representations of the con-
formal algebra which are

(i) integrable with respect to the Weyl subgroup,
(ii) unitary with respect to the Poincaré group,

(iii) and remain irreducible under the Poincaré
group, are the most degenerate UIR of SU(2, 2) of
discrete series (ladder representations) given in
Ref, 12.

3. IRREDUCIBLE REPRESENTATIONS OF
SU(2,2) 1w

The Lie algebra of the Weyl group { = T4 «
[SO,(3,1)® D]} is given by commutation relations
(2.1)-(2.3), (2.7), and (2. 8). The UIR's of ‘W were
studied in Ref. 21 and can be divided into five
classes in accordance with orbits generated by a
direct product of the universal covering of the
Lorentz group with the dilatation, i.e., SL(2,¢) ® D,
in the group of characters of four translations T4.
We get the following five infinite-dimensional
classes of UIR of W21:

(i) Orbit p, = 0. The UIR of ‘W is characterized
by the pair (k, c) related with two invariants
of SL(2, ¢) and by a real number s,

(ii) Orbit p p# > 0 with either p, > 0 or p, < 0.
The Ulﬁ of ‘W is characterized by an eigen-
value of the invariant of SU(2), that is by j
which can be 0, (1/2), 1, (3/2), - - -, and by the
sign of the energy p;.

(iii) Orbit p p# < 0. The UIR of W is characteriz-
ed by an invariant of SU(1, 1).

(iv) Orbit p p# = 0 with either p, > 0 or p, < 0.
The UIR of W is characterized by the sign of
Pg by the invariant j of E(2), and, if 0 < j < o,
by the fact whether the helicity A takes all
integer or half-integer values.

(v) Orbit p p» = 0 with either py> 0 or p, < N.
The UIR of W is characterized by the sign of
Do by invariant j = 0 of E(2), by fixed helicity
A (an integer or half-integer number), and by
the real parameter s.

The representations of classes (i) and (v) are
irreducible under the universal covering of the
Poincaré subgroup ®. All possible extensions from
the IR's of ®@ to SU(2, 2) are already classified in
Sec. 2, so that we are left with classes (ii), (iii)

and (iv).

Exactly in the same way as in Sec. 2. 1, it is poss-
ible to show that the representations of class (iv)
cannot be extended to IR of SU(2, 2). Therefore,
we only have to consider classes (ii) and (iii).

For each representation D(G) of the little group
G[G = SU(2) or SU(1, 1); in the former case it is
also necessary to specify the sign of p,] we realize
the representation WD(G)) of SU(2, 2) induced by
D(G) as follows:

Consider the Hilbert space X of square-integrable
functions ¢, ¢y, - - of a 4-momentum b, and a
discrete variable A with the scalar product

wlv) =2 [ 0,0 w0 dp.

Here: (a) If G = SU(2), A takes the values —j, —j +
1,---,+j (j is the spin) and A consists of points
for which pp* > 0 and either p, > 0 or p, < 0,
depending on the representation considered. (b) If
G = SU(1, 1), A consists of points for which p,p# <0
and X takes the values 0, £1, +2, ..., in the case

of continuous series of representations of SU(1, 1)
or A =mg, my + 1,+0c,0r —my,—my—1,--.,in
the case of discrete series. m is a positive
integer or half-integer.

3.1)

In this space the Lie algebra of ‘W is realized by
the operators22

P, =1, (3.2)
D =i(p,ar + 2), (3.3)
M12 :_z(p XV)S +R,

Myy =—i(p X V), + (p1/p +p3) R, (3.4)
Myy = i@ X V), + (by/p + b3) R,
) b
Moy = (P2, + p13) _ﬂpo_fzﬁs'j R
_ Mg [T
s nen )
y Doty
Mog = —ilpgdy * to?0) * prrp 5y R
_rsp[h0T)
5 —rm) o

Mgys = —i(pgd5 + p3d) — m~z’:’ @7,
b
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where we have used the notations:

S = sign (po/“’ol),

m =+ (|p,pn )12,

p =+ 0] +p3 + 52,

(P'T) = P1T1 + psz-
{Tv T,, R} is a representation of the Lie algebra of
G with the following commutation relations:

[Ty, R] = —iTy,

[T5, R] = iTy,

[Ty, T,) = iR, 6 = sgn(m2/|m2|).

(3.6)

We can now make an extension to the conformal
algebra by setting

K, =k, +2i(L, —M,) @ +ib -1%), 3.7
where
L, =i,8,0* — 5,8, b2 (3.8)
kl-l =ppg;()\a'<a}\ - 2gp,<(l)>\a)‘ + 2)5'(——'——-&.

m2
(3.8

and b is an arbitrary constant. If we require the
generators K to be self adjoint, then 5 has to be
real. Inthe spinless case (L, =M, ), it is enough
that b2 is real.23

Let us remark that the commutation relations for
the generators given above can be checked by a
direct calculation. This is done easier in the
'spinor-basis' defined in Ref. 24 where the genera-
tors take a particularly simple form:

My, =L,+S,

K, =k, — 2iS,, (3" + ib(p/m?),
B, =bp

D =i({)p8l‘ + 2).
Here,

(So1 Soz25S03)= (S 3, S31, Sp0) = 18,
(Ty, Tp, R) if p,pt > 0,

=%(iT1, iTy, R) if p,pu < 0,

Next we shall prove the following theorem.

Theovem: Every representation of the conform-
al algebra acting in Hilbert space JC defined in
(3. 1) which is integrable with respect to the sub-
group W, the restriction of which with respect to
W being a unitary irreducible representation of the
class (ii) or (iii), is equivalent to one representa-
tion of the family given in (3.1)-(3. 7).

Proof: Let{Mm,, P, D} span an integrable re-
presentation of the Lie algebra of W of class (ii)
or (iii) acting on Hilbert space ¥. Suppose that
we have two extensions to the conformal algebra
with additional generators K# and KP’, respectively.

Let us put

0‘l =K, _Ku' (3.9)
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It is comfortable to work with the momentum-
helicity basis

P 1, ix > =p,1p,, 0>,

P-Mp,,jr > =prlp,, i1 >,
where j labels the representations of the little
group G.
We have the commutation relations

[Pp ’Oul = [PM’KI; _Ku]

=2(M,, —g,D)—
[P+M, 0y] = P+[M, 0] = 0.

2%(M,, —g,D) =0,

Therefore, we can write

OglBys x> = flp,, M)Ip,, i1 > (3.10)
Let us remember that Pauli-Lubanski 4-vector
W, is defined by

- 1 v
W, =2 €,,,M"PPcor

Wy=P'M, W=P,M—(PXN),
where
M = (My3, M3, My5),

(3.11)

N = (Mo, Moz, Mog)-
In the helicity basis we have

W()Ipu’jx > = P°N1|p“1j)t > =pr |pu,jX >
We can now rewrite Eq. (3. 10) in operator
notation:

0o =f(P,, Wo)-
Since 0, commutes with rotations, we can write
Now we use the fact that 0‘J transforms as a 4-
vector under homogeneous Lorentz transforma-
tions. The most general 4-vector whose 0 com-
ponent depends only on P, and W, is given by

0;1 =f (MZ)Pu +f2(M2)W“.25 (3.12)
From the commutation relation (2. 8) follows that

iaD ~iaD = p—a
e Pue e Pp.

Therefore

eiaD(Pp)ne-iaD = e—na(P“)n (3.13)
and taking into account (3.11)

ei"DWLe-‘aD =e W,. (3.14)
From (2. 9) it follows that

eiaDO” e~ial = ¢a0,. (3.15)

From this formula together with expression (3. 13),
it follows that 0‘J is a homogeneous function of
degree —1 in the momenta P, so that

P w
- i b
0“ o —£ +BM2 . (3.16)
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Let us go to the spinor basis. Substituting expres-
sion (3. 8) into M, =L, + S“ and putting the
obtained expressmn for M, into (3. 11), we get

=p*S, W =p¢S—i(pXxS8). (3.17)
Keeping in mind that SO]. = is]., we obtain
W, =1iS,p" (3.18)

Suppose now that K is given by expression (3.7)
with b = 0. After a tedious calculation we receive

(Ko K1) =K

=[K +ap° + ipS,, 2=,
m 2

[} + 00’ Kl + 01]

b4 . pY
Kl + a;;Z_ + ’lﬁslu’—n—z] (3. 19)

_ 4 [p2? { + + S,
=—\7- ) \PobySo1 T DoP3S31 T Spa it
+ So3P by + Syy(—p2 — b2

This commutator is zero only if S, = 0 or 52/4
— a = 0. In both cases K| belongs to the family
given in (3. 7). QED
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The problem of finding highest-weight polynomials in certain chains of subgroups of the unitary group
is shown to be related to finding semi-invariants of certain ground forms according to the theory of

invariants developed by mathematicians long ago.

INTRODUCTION

The Lie algebras of the full linear group in n-
dimensional space, as well as those of many of

its Lie subgroups, can be realized as differential
operators in certain indeterminates, and bases

for integral representations of the linear group
can be realized as polynomials in these indeter-
minates. Given any irreducible integral repre-
sentation (IR) of the unitary group U(n) in # dimen-
sions, the problem of dividing the carrier space of
the IR into subspaces, each of which is irreducibly
invariant under a given subgroup of U(n), is of
much significance in problems of nuclear physics.
It happens that this problem amounts to obtaining
the semi-invariants of certain ground forms in
multiple fields. The purpose of this article is to
point out this connection and to work out one such
problem of physical interest.

In Sec. 1, it is shown how the double binary (2, 1)
form is related to one such problem of physical
interest discussed recently by different methods.

In Sec. 2, the highest-weight vectors of a subgroup
R(3) belonging to the carrier space of an IR (7, 1)
of U(5) are obtained and their relation to the com-
plete system of covariants of the double binary

(4, 1) form (which was discussed by Todd?! in
1946) is shown.

In Sec. 3, we consider the binary n-ary (v, 1) form
subjecting each set of variables to the group of
step transformations in the two-dimensional and
n-dimensional space, respectively. Making use

of both the Littlewood techniques2 and the classi-
cal symbolic techniques, we obtain a complete
irreducible system for the highest-weight vectors
of the subgroup R(3) belonging to the carrier space
of the IR (», 1, 1) of U(5), by considering the semi-
invariants of a binary 5-ary (4, 1) form.

1. RELATION OF THE BASES IN THE CHAINS
U(3) DR(3) TO THE DOUBLE BINARY (2, 1)
FORM

Consider the (2, 1) form

(41152 — 2a, ¢y — 2a5,y2)x’

+ (@%2 — 2a59xy — 2a3592)y’.  (L.1)
A covariant of this form is a polynomial in the
coefficients a,; and the variables x, y, x’, y’, which
is invariant with respect to any homogeneous lin-
ear transformation of the pair x,y and any homo-
geneous linear transformation of the pair x',y’,
independent of one another. A covariant is unique-
ly determined by its leading coefficient called the
semi-invariant which is a polynomial in the a;;.

A polynomial in q,, is a semi-invariant if and only
if it is annihilated ]by the operators3

J.Math. Phys., Vol.13,No. 1, January 1972

2 0
C =Qqyq4=— + a —+ yqy ——
12 llaal2 2laa22 318032 H
0 0 0 0
L,.=0y=—— T Qgo7— —Ay1=—— — a .
+ 21 aa31 22 aasz 11 8a21 12 aazz

A covariant may be supposed to be homogeneous
both in the variables and the coefficients separate-
ly. The weight of a coefficient g; ; 1s defined to be
(i — 1,7 —1). The weight of a product of coeffici-
ents a,; is the sum of the weights of its factors,
the sum (w,, w}) + (w,, wy) being defined as (w,

+ wg, wy + w)). It would also follow that a semi-
invariant is homogeneous and also isobaric. If a
semi~invariant is of degree 4 and of weight (w, w'),
then it is the leader of a covariant of orders »

and #’ respectively in the two pairs of variables,
where n= pd — 2w and n’ =p'd — 2w’,p and p’
being the orders of the ground form in the two
pairs of variables. If S is a semi-invariant, then

[Clz’ Czl]s = (012021 - Czlclz)s

=(Cyy —Cyy)S =7'S (1.2)
and
(L,,L])S=(L,L_—L_L.)S=LS=n/2)s, (1.3)
where
3 ? v 2 ?
C, = E_}l “fs"—aa,s,’ c, = SZ; a’s_aam (1.4)
and
3 2 2 1 1 3
L,=C3—C;, L_=C3-Cp; L=C;—Cj.
(1.5)

The covariants of (1.1) have a finite subsystem so
that every covariant can be written as a poly-
nomial in the elements of the subsystem. The
complete irreducible system for the form (1.1)
was first obtained in the last century. But the
same complete system has been obtained recently?
unconscious of the relation of the system to the
problem of covariants, in a discussion of the frac-
tional parentage coefficients in Nuclear Physics.

Consider the linear forms

ag ¥’ +agzy’.
(1.6)

A polynomial in the coefficients ag; is a simultane-
ous semi-invariant of these forms if and only if

it is annihilated by the operator C,,. By Peano's
theorem?5 the simultaneous covariants of the three
forms can be obtained from those of the first two
forms by Aronhold's process and the covariants
of the first two forms other than the determinant
@1,059 — 01905, can in their turn be obtained
from those of the first form alone by Aronhold's
process.

’ ’ 7 !
ayx’ tagey’,  ag X't ayy’,

The operators C], 7,»' =1,2,3, are then found
to be nothing but the Aronhold operators of this
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problem. Peano's theorem then implies in our
present simple problem, that all the simultaneous
semi~invariants of the forms (1. 6) can be obtain-
ed by applying polynomials in C,' "on the semi-
invariants al, (@, ,a,, — a4,0,,)% Since an Aron-
hold operator changes a semi-invariant intoa semi-
invariant and a covariant into a covariant and does
not change the degree or order of a covariant, it fol-
lowsthat all semi-invariants whichare of degree &
inthe symbol 1 as second suffix and of degree i, in 2
as second suffix and hence are leading coefficients

of covariants of degree », + h, and weight £, are

. . —h h
obtained by operating on a;“l 2 (ay1099 — G19051) "

by polynomials in C, . This shows that all the
semi-invariants of degree i, + h, and weight £,
span a linear space which is irreducibly invariant
under the Lie algebra £ generated by the opera-
tors C;'. Therefore these semi-invariants form
a basis for the IR corresponding to the partition
(ky, hy) of the group U(3) whose Lie algebra £ is.

Now the operators L,,L_, and L span Lie algebra
R which is isomorphic to that of R(3), the rotation
group in three dimensions and is a subalgebra of
£. Since a polynomial in g;; is a semi-invariant
of the form (1.1) if and only if it is annihilated by
Ci5 and L, it follows that each semi-invariant of
(1.1) which is of degree #, + k, and weight &, is
the highest-weight polynomial with respect to R
of a certain subspace invariant under R, of the
carrier space of the IR (k,, h,) of U(3). The term
“weight” in the expression “highest-weight poly-
nomial” (hwp) is to be understood in a way quite
different from the weight of a semi-invariant;
weight here means the eigenvalue of the operator
L corresponding to which the polynomial is the
eigenvector of L.

These highest-weight vectors were obtained in
Ref. 4 making use of a theorem of Littlewood® to
determine which IR's of R(3) occur when an IR of
U(3) restricted to the R(3) subgroup, is reduced
with respect to R(3). The problem of obtaining the
highest-weight vectors of these component IR's
and the problem of finding which IR's of R(3) occur
as components when the restriction to R(3) of a
given IR of U(3) is decomposed (branching pro-
blem) are dependent on one another. If the branch-
ing problem is solved,then the hwp can be obtained
at once and if the hwp are known,then the branching
problem is solved.

2. HWP IN THE CHAINS U(5) © R(3) FROM THE
DOUBLE BINARY (4, 1) FORM

The hwp in the U(3) O R(3) chain (i.e., the hwp of
the various IR's of R(3) which occur when the R(3)
part of a given IR of I/(3) is decomposed into
irreducible parts) are required for the evaluation
of the fractional parentage coefficients in the con-
figuration space of a single orbital in the p shell,4
When the next shells are considered, one requires
similar hwp in the U(2j + 1) > R(3) chains for
j=1,2,--+, It will be found that the hwp in the
U(2j + 1) D R(3) chain for IR's (hy, hy) of U(2j + 1)
are identical with a set of semi-invariants of the
(24, 1) double binary form

2 +j X .
Z;(Z (li+v |j—v+ l)l/zavi x*y! v>x}
i=1 \o=—j

The hwp in the chain U(5) O R(3) will be found
explicity only for the IR's (k,, 1) to save extensive
numerical work, the procedure being clearly the
same for any IR (h,, h,). For j = 2, the following
operators (having the same commutation relations
as the operators (1.5))

L, =2(Cl—-cd +ci—cy,
L, =2(C3+c)) +3(ch +cl),
L., =2(C; +C3) +3cC3+cd)

span a Lie algebra® which is a subalgebra of the
Lie algebra 9 spanned by C,i,j =1,...,5 of the
unitary group U(5). The hwp in the chain U(5) D
R(3) are precisely the semi-invariants of the (4,1)
form

f= (J2ay1x% + 4ay,x3y + 473a5,x2y2
+ 8agyxy3 + 442a5.y4)x’
+ (V2ay %% + 4a,,x3y
+ 4J8a,,x292 + 8ayoxy3 + 4J2a5,94)’. (2.1)

A polynomial in @, is a semi-invariant of the form
(2.1) if and only if7 it is annihilated by L, and the
operator

2 d
Cig= 2(1

ATy, .2

Similarly, a polynomial in a; ; is a semi-invariant

of the linear forms
agqx’ tany', i=1...,5

if and only if it is annihilated by the operator (2. 2)

Further, all the semi-invariants of degree &, + h,

and weight &, of these forms are obtained by

operating on

Bk A
(@11)"7 "2 (a11099 — a12a91)"2

by polynomials in the Aronhold operators C’.
Hence these semi-invariants span a space v which
is irreducibly invariant under % and every semi-
invariant of (2. 2) of degree i, + &, and having
second component of weight equal to &, is the poly-
nomial of highest-weight with respect to®Bof a
certain subspace V'’ of V, where V' is irreducibly
invariant under 8.

A complete system of covariants for the form

(2. 1) was obtained long back?! but they will be
obtained here using Littlewood's S function techni-
ques because the chain U(5) 2 R(3) is of much
physical interest and would serve as an example
of problems of similar kind which are in fact
numerous. The Littlewood technique also provides
one with the branching rules even before the semi-
invariants are obtained and the determination of
the branching rules for such chains has been a
very difficult (almost impossible) task so far.

When the pairs of variables x,y and x’,y’ are
subjected to independent linear transformations

(3)=43) e (3) =2 (7).
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The products x4, x3y, x2y2, xy3, (3»4 are trans-
formed by the induced matrix2 (4)%}, and the row
vector of the coefficients a,; of the form (2. 1) is
transformed by the direct product of matrices
A{4} x B, The homogeneous products of degree ¢
of the coefficients are transformed by the gth
induced matrix (A{4} x B)4}, Denoting the direct

sum by 77,if
(A4} x B)@ = 3 AD) x B, (2.3)

then to each term on the right-hand side corres-

({4}’ {1}) ® {1} = ({4}’ {1});

ponds a set of linear combinations of products of
degree ¢ in the coefficients which transform like
the direct product of two tensors of types {\} and
{u}. Writing the spur of At4} x B as ({4}, {1}), we
have from (Ref. 2) ({4}, {1}) ® {n} = 22 ({4} ® {ny, n,},
{n1, ny}), where ® is the Littlewood's “new multi-
plication” and the summation is over all partitions
(ny, ny) of n into two parts because the matrices

A and B transforming the variables of (2. 1) are
only 2 X 2 matrices.

It is not difficult to obtain the following expansions
(some of these were obtained by Murnaghan?):

{4}, {1h) ® {2} = ({8}, {6, 2} + {4, 4}, {2h) + ({7, 1} + {5, 3}, {1, 1};
(4}, {1)) ® {3} = {12} + {10, 2} + {9, 3} + {8, 4} + {6, 6}, {3 + ({11, 1} + {10, 2} + {9, 3} + 2{8, 4} + {1, 5}, {2, 1});
(4}, {1) ® {4} = {16} + {14, 2} + {13, 3} + 2{12, 4} + 2{10, 6} + {8, 8}, {4})

+ ({15, 1} + {14, 2} + 2{13, 3} + 2{12, 4} + 3{11, 5} + 2{10, 6} + 2{9, 7}, {3, 1})

+ ({4} ® {2r 2}, {2’ 2});

(2. 4)

(4}, {1p) ® {5} = {4} ® {5}, {5} + ({19, 1} + {18, 2} + 2{17,3} + 3{16, 4} + 3{15, 5} + 4{14, 6}
+ 4{13,7} + 3{12, 8} + 2{11, 9} + {10, 10}, {4, 1}), + ({4} ® {3, 2}, {3, 2});

{4}, {1h) ® {6} = {4} ® {6}, {6}) + ({23, 1} + {22, 2} + 2{21, 3} + 3{20, 4}
+ 4{19, 5} + 4{18, 6} + 6{17, 7} + 5{16, 8} + 5{15, 9} + 4{14, 10} + 3{13, 11}, {5, 1}
+ {4t e {4, 2 {4,2}) + {4} ® {3, 3}, {3, 3)).

A covariant which is of type (A ,A,},{n,7,)) has
the leading term which is just the hwp of an IR of
B occurring in the reduction of the restriction to
B of the IR (n,, n,) of A. Hence in (2.4) each sym-
bol ({4} ® {ny, ny}, {ny,7,}) may be interpreted as
standing for the expression “the IR's of B contain-
ed in the decomposition of the restriction to B of
the IR {nl, nz} of A” and the right hand side gives
the IRs.

The, covariants of types ({r;,,}, {#, 0}) of the form
(2.1) are simply the covariants of the binary
quartic for which the complete irreducible system
is well known. So we will determine the complete
system for covariants of types ({a;, x,}, {n, 1}), it
being necessary to calculate expansions {4} ®

{ny, n,} as in (2.4) for some more values of #; and
n, to find a complete system for covariants of all
types.

A covariant of type (A1, A5}, {11, n,}) is of orders
(A1 —j) and (n, — n,) in the two pairs of vari-
ables respectively,and is of degree (n; +ny). It
will be convenient to denote a covariant of type

(o 1) {ne, no)) as (;ll_'nz ) So from the expan-

Ao f
sions (2., (120), (30), (%), (&), (%) are
found to be irreducible covariants and the expan-
sion of ({4}, {1}) ® {4} gives no new irreducible

covariants of types ({\;,25},{n,0}). It may be easily

verified that this set of covariants is the same as
the well-known complete irreducible system for
the binary quartic. So the completeness of this
set among covariants of type (x4, A5}, {n, 0}) is
clear.
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Coming to the covariants of type ({x, Ao}, {n, 1}),
we see that the expansions (2. 4) show that the
following are irreducible covariants.

() (.G G G (B CD. CY
3, (), (oY) @®

The expansion ({4}, {1}) ® {5} gives no new irreduc-
ible covariants. It can be shown now that if all
covariants of types (A4, 2.}, {n — 1, 1}) for

n— 1 = 4 are expressible in terms of the covar-
iants (2. 5) and

() () () 09 (49

then all covariants of types ({\ 1, A,}, {n, 1}) are
expressible in terms of the covariants (2. 5) and
(2. 6) with the help of the following theorems.

(2. 6)

The following statements regarding a (p,q) double
binary form F can be proved8 exactly in the same
way as the corresponding statements for a single

binary form.

(1) If the covariants of degree (m — 1) are all
expressible as rational integral functions of F, ¢4,
..., ¢, then every covariant of degree m is a
linear combination of transvectants of the form

(I{m_l,F)T-S, r=1,...,p, s=1,++,¢q,
where K, _, is a product of (F)%(¢;)® «++ (¢,)*
and is of degree (m — 1).
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(2) I1fK,, ., = VW, where V and W are products of
F, ¢4, ..., ¢, but of smaller degree than K, _, and
if the two orders of W are, respectively, not less
than » and s, then the transvectant (X, _,, F)"* may
be excluded from investigation.

The following are the semi-invariants correspond-
ing to the covariants (2.5) and (2. 6)

(14?> = 4 (220) = 2V2a,a3; — I3 (ay,)?,

()=
(%)=
(30) = 2J'6'a11a31a51 — 3“11“41 _ 3‘,210151
+ JBayia3,a41 — 2/ J3a3,,

2
(a31)? + 2ayya5) — 25,44y

f3ay1a51a3, — ‘m(“n) 41 — ‘121/‘]2

161> Ars, (11) J3a2 - al2,

<2g> - J2—a11A13 - ‘]_a21A12’

(241}) a11Ai§ - 421A14 + 031A13 - ‘141Ai§,

(241)1= 35,855 — 20%ag,A 15 + 342a4,0,3,
)

12 12 1
=a9:031814 * ‘11221“41A13 + "131041A12
— J6(ay,841814 + ap105,A75)

2 .12
— J3/2a3,A75

12 12 2
+ 2(a;,a3,075 tay1a5,875) — a31853,

(341)1'; J3(az103181% + a31014813)
— 1/03(ay, 04,875 + 243,413)
— J2(ay,841A13
+ 2a5;05,813) + 4/V3a, 505,413

12 2 1
+1/2(az,a31853— a31833),

31\ =

(21> ‘[2“11A452+ 1/*/_2_“41 - ‘/_zaalaglAm
+ 5J'2/6a31A14 + 1/2J3a31A23
— 1/48ay1a5183F — J3ay,a,,A33

—1/Bagya5,875 + 1/02a3,832,

(441> = 4A}Za21a§1 - 2A1§“21“31“41 + 4Ai§a§1a41
— 4815 10310 + ZJ—gAigaZIaSIasl
- 4‘/’6_‘315‘121‘131"' 8a33a3, —
- 2A (a31)
+6A13a3,a,; + 3833a3, + BATSaG a5,

4A13“11“31“51
—JBa33a5 041~ BA3 502 a5,

+ Ba33ay,05, — 9813a,105, + 388 3a,,4,,

(401> = 2{%ay,031a5,815 — 8”Aifa21a31a51
+ 4JZA13a% 305, — 81201305 a4 a5,
— 33a1a, a5, — BATfay,63;
— 33a}3a3,0%,

+ 3J3_A}§a21
+ 1281205, 05,04,
— 3J2_Ai§a§1
+ 438150, 10,05,

12 2 12 2
— 428130, ,a5, + 434 3a,,05,
+ 2JZa15a5 04105, + 3383543,43

9 AL2,2 + TAl2 2

- 25921441 25821931

12 2
BA15a31a5,

12 2
3 Baj3a3 a5,

12, 2
— 33833a51a3,85, + 202A32a,,07,

12
— 283305183104y,

where Aisz = (a,1059 — G,2a). The above semi-
invariants may be obtained by the method describ-
ed in Ref. 2. They may also be obtained by writing
down the Weyl basis vectors of the IR(xn, 1) of U(5)
and taking linear combinations of them so as to
satlsfy the equations L P =0 and L P =

2(}\ — XAgy). The polynomlal correspondmg to the
Weyl tablepz jhk--risal2 a1y *

3. HWP IN THE CHAIN U(5) O R(3) FROM THE
BINARY-5-ARY (4, 1) FORM

To find the hwp in the chain U/(5) © R(3) for IR's of
U(5) corresponding to any partition (h,, ..., k5),
one has to solve the differential equations

C;P=hpP, C,P=0,

7'<.7, i’j=1:""5’ (3‘1)

L,Pp=0, LP=coP (3.2)
for polynomial solutions. For, it has been shown?
that the polynomial solutions of (3. 1) span a linear
space W which is irreducibly invariant under the
algebra ¥ and a solution of (3. 1) is the hwp with
weight o, of a subspace W which is irreducibly
invariant under ¥ if and only if it satisfies (3. 2)
also. The required hwp are the invariants of the
ground form

Ex,<‘/—alzx1 + dayxdx, + 4‘/3_"3;"1*"3

+ 8ayx3x, + 412a5,25),  (3.3)
where the dashed and undashed variables are sub-
jected to linear transformations separately and
where both the dashed and undashed variables are
subjected to transformations which are represent-
ed by upper triangular matrices and called step
transformations by Weyl.10

The complete irreducible system of invariants
under the group of step transformations for a
fmlte number of linear forms in # variables

Z ax ;i —1 2,... was shown to be a,,, A}2

7 ijs
Ai 23, AJZ by Weltzenbbckl1 who called
thém semi- 1nvar1ants A = detlag a,y ey,

We will now proceed to develop some symbolic
notation, making use of the already developed
notation in invariant theory.

We state the following theorem whose proof is
easy. Consider the binary n-ary form written
symbolically as
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f = (ax)"(Ax"),

which is therefore of order » in the pair of vari-
ables x = (x4, x,) and linear in the variables

2 =(x4,... ,x,’j. The invariants of this form
under independent step transformations represent-
ed by upper triangular matrices, of the two sets of
variables (x) and (x’) separately, are all express-
ible as polynomials in the symbolic factors

a,[ab], A, [AB), [ABC], ... [AB --- K],
n symbols

where (ax) and (Ax’) are symbolic factors of the
first kind and [ab), [AB - ] are symbolic factors
of the second kind and aA, bB, -- - are pairs of
equivalent symbols.

We also state that such an invariant of degree m
in the coefficients contains m equivalent pairs of
symbols a4, bB, ..., kK and the symbolic expres-
sion of the invariant is homogeneous of degree

r in each of the small letters and homogeneous
and linear in each of the capital letters.

We will refer to the above invariants as semi-
invariants of f.

We define the width of a bracket factor [AB -]
as the number of symbols it contains. A bracket
of width zero is the number 1 and a bracket of
width unity is a free symbol. Without loss of gen-
erality an invariant of the above form under the
transformations mentioned, may be supposed to be
homogeneous in each set of the coefficients «; {,
@;9, 44+, a;, and hence each term of the invariant,
when expressed symbolically, consists of the same
number of bracket factors of each width.

Since the semi-invariants are polynomials in the
coefficients of f and hence are polynomials in the
symbols, we will define transvectants of symbolic
factors as follows. The transvectant of index &,
O<h<vr,is

(a'r’ br)h = [ab]ha‘r-hb'r—h.

The following transvectant of index 1, in capital

letters, is defined as (P[A’B’-++ ] [A"B"++* ]+, A}
=P[A'B' P A][AIIBII ...]... +P[AIBl -.-J
[A"B"’ B A}"' +P'|-A'B""][A"B""'J «

[+« A], where the factors [A’B’ ---],[A"B" -]
all have the same width w,and P is a product of
factors each of which has width > w, We define
(P,A)0 = PA and (P + @,A)! = (P,A)! +(Q,4)},
where P and @ are symbolic products in capital
letters. We also define ([A’B’ * -+ |, A)1 =0 when
the left-hand side bracket has width equal to n.
The transvectant of index (k, H) of a semi-invari-

ant P(a’, b’ -+ )Q(A’, B’ - - - ) with a”4, is defined as
(P(a’, b” - )QUAT, B =), amA)H=(P(a’, b+ ),
anN*(Q(A’,B' »-+), A)H, where 0 < h < r and
0<sH=<1.

Let C,, be a semi-invariant of degree m and be a
product of symbolic factors. Then the product con-
tains m small letters a4, ..., a,,¢, a and m capital
letters A,, ..., A, 1, A and may be written as

C, = Pla,a]*l[aya]®2 ...

[am_la]"‘m‘la”[AiAj -er A A
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where a; + ... a, ; + v =7 and P does not con-
tain the symbols g, A and all bracket factors in the
capital letters contained in P have width not less
than the width of [A; +-- A,A] (which may be of
width 1 also). Then C,, is a term in the transvec-
tant (C,,-,, a7A)»E where k= —vand H =0 or 1
and C,,_y =Pay' -+ apm' [A; -+ A,]. Now

(Cm-ly aTA)h'H = (dm—1) a’)h(Dm—ly A)H3

where d,,_, is a product of symbols of small
letters and D, ; is a product of symbols of capital
letters. Let C,, = (T, t and T being, respectively,
symbolic products of small and capital letters.
Then (D,,_;, A)¥ = T and

(Cppers @7AVHE — C,,

= [(d,-1, ANt — )T = £(d,,;, a)"'T,

m-1

where k' < h and where each d,,_, is obtained from
d,._, by convolution, i.e., by replacing pairs of free
symbols by bracket factors. Therefore,

C,, = (Cppoy, a”A)H-H + E(_C_m—]_; a’A)k A,

where C,,., is obtained from C,,., by convolution
with respect to the small letters and ' < &,

Now to find semi-invariants of f of degree g we
must take in (2. 3) 4 as a 2 X 2 upper triangular
matrix and B as ann X n upper triangular matrix.
On account of the one to one correspondence of the
semi-invariants and covariants of a binary form,
the decomposition of (A"})l# and hence the calcu-
lation of {r} x {y} where (p) is a partition of g, may
be done as usual. Coming to the part B, we know
all the semi-invariants of type (u) = (uy,..., f,)
of n linear ground forms.

As an example, we will find a complete system for
the semi-invariants of type (n, 1, 1) = (p) in the
previous paragraph, for the ground form (3.3),n
being a positive integer. In their symbolic expres-
sion,these have in the capital letter part only one
bracket factor of width 3;in other words,their capi-
tal letter part would be like [ABC] DE - -- where
the symbols L,E,: -+ are (# — 1) in number. We wil

denote such a semi-invariant by ('{'1,3}2) where Ay — )

= 4d — 2p, p being its weight with respect to the
binary variables (definition of weight is given on
p.2)and d = + 2 and {x;,1,) is an S function
occurring in the expansion of {4} ® {n,1,1}.

We have the following expansions:

{4} ® {2, 1,1} = {13, 3} + {12, 4} + 2{11, 5} + {10, 6}
+ 2{9, 74,

{4} ® {3,1, 1} = {17, 3} + {16, 4} + 3{15, 5} + 2{14, 6}
+4{13, 7} + 2{12, 8} + 3{11, 9},

{4} ® {4,1,1] ={21, 3} + {20, 4} + 3{19, 5} + 3{18, 6}
+5{17, 7} + 4{186, 8} + 6{15, 9}
+ 3{14, 10} + 4{13, 11},

{4} ® {5, 1, 1} = {25, 3} + {24, 4} + 3{23, 5} + 3{22, 6}
+ 6{21, T} + 5{20, 8} + 8{19, 9}
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+ 6{18, 10} + 8{17, 11} + 4{16, 12}
+ 5{15, 13},
{4} ® {6, 1, 1} = {29, 3} + {28, 4} + 3{27, 5} + 3{26, 6}
+ 6{25, 7} + 6{24, 8} + 9{23, 9}
+ {22, 10} + 11§21, 11} + 8{20, 12}
+ 10{19, 13} + 5{18, 14} + 6{17, 15}.
These suggest the semi-invariants of the follow~

ing types to be irreducible and complete together
with the semi-invariants (2. 6):

(1 1,1) (1,1,1) (211) 2,1,1) (2,1,1
6 2 ’ 6 3 4 s

2 1,1) 2,1,1 51,1 3,1,1) (31,1

2 2 8 b 4 2 4 ?
3,1 3,1, 1\ (4,1,1\ (41,1 (41,1
B3y 63, (4>’(4)’(z>“"
Gy (.9

We will show that if all semi-invariants of the
type ( Zil) where m = 6 can be expressed as
polynomials in the semi-invariants (3.4) and (2. 6)
then all semi-invariants of the type ("*3;}'!) can
be done so.

-
b

Now any semi-invariant of degree (m + 3)isa
linear combination of transvectants (C,,.,, a*A)%-#
where C,,., is a semi-invariant of degree (m + 2).
When H =1 in the above transvectant, we need to
consider C,,,, which have just one bracket factor
[A’B']} in which case the transvectant is of degree
3 only. Hence we have to consider transvectanis
(Cpprgs a2A)%:0, where C, ,, has one and only one of

the semi-invariants (3 4) asa factor In sz we

(3 1 1y, (4 1. 1) ( )and (3 0) as factors because

all others have the1r 20 = (Refer to statement

2 on p.8). But (*;°) and ( 00) come out as factors
from these transvectants and the transvectants

(F, a2A)?:0 where F is any one of the above semi-
invariants except the last two,are all of the

type (”‘2“11) where m < 5. Hence they are express-
ible in terms of (3.4) and (2 5) Therefore all the
semi-invariants of type (™ 2a ) are expressible as
polynomials in the semi-invariants (3. 4) and (2. 5),
which are irreducible.
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Radial Matrix Elements of the Radial-Angular Factorized Hydrogen Atom
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The hydrogen atom is factorized according to the scheme 0(4,2) O 0(2,1) x 0(3) and the radial group

0(2, 1) studied. 1t is shown that 5D, 60 o where D, is a dilatation operator, is proportional to a tensor
operator in this scheme,allowing a group theoretlcal study of the radial matrix elements of » #, includ-
ing an explanation of the Pasternack and Sternheimer selection rule.

I. INTRODUCTION

The selection rule, on hydrogenic radial integral
discovered by Pasternack and Sternheimer,?
namely
R,,R,,’
foo TR y2gy = 0,

0 rs ':Il'—l’|+1

s=2,3,
has stimulated recently at least two attempts to
explain it group theoretically. That of Swamy, Kul-
karni and Biedenharn? is based on the O(4) sym-
metry of the hydrogen atom and uses a complex
recursive technique. Armstrong3 approaches the
problem more directly by showing that radiallike
functions of two variables » and 7 transform accord-

ing to representations of the noncompact group
0(2, 1), and, in this scheme, he shows that positive
and negative powers of » have tensorial transfor-
mation properties. Armstrong's scheme however
is unsatisfactory for two important reasons. First,
his two variable functions of r and 7 never com-
pletely coincide with true one variable radial func-
tions of v /n,where n is the principal quantum num-
ber. As one consequence of this,no treatment of
off-diagonal matrix elements can be given. Second~
ly, Armstrong radiallike functions and their associ-
ated O(2,1) group stand isolated from any encom-
passing group scheme such as the 0(4, 2) model of
Barut and Kleinert.4 Kleinert5 has written a paper
containing an excellent review of this model.
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+ 6{18, 10} + 8{17, 11} + 4{16, 12}
+ 5{15, 13},
{4} ® {6, 1, 1} = {29, 3} + {28, 4} + 3{27, 5} + 3{26, 6}
+ 6{25, 7} + 6{24, 8} + 9{23, 9}
+ {22, 10} + 11§21, 11} + 8{20, 12}
+ 10{19, 13} + 5{18, 14} + 6{17, 15}.
These suggest the semi-invariants of the follow~

ing types to be irreducible and complete together
with the semi-invariants (2. 6):

(1 1,1) (1,1,1) (211) 2,1,1) (2,1,1
6 2 ’ 6 3 4 s

2 1,1) 2,1,1 51,1 3,1,1) (31,1

2 2 8 b 4 2 4 ?
3,1 3,1, 1\ (4,1,1\ (41,1 (41,1
B3y 63, (4>’(4)’(z>“"
Gy (.9

We will show that if all semi-invariants of the
type ( Zil) where m = 6 can be expressed as
polynomials in the semi-invariants (3.4) and (2. 6)
then all semi-invariants of the type ("*3;}'!) can
be done so.

-
b

Now any semi-invariant of degree (m + 3)isa
linear combination of transvectants (C,,.,, a*A)%-#
where C,,., is a semi-invariant of degree (m + 2).
When H =1 in the above transvectant, we need to
consider C,,,, which have just one bracket factor
[A’B']} in which case the transvectant is of degree
3 only. Hence we have to consider transvectanis
(Cpprgs a2A)%:0, where C, ,, has one and only one of

the semi-invariants (3 4) asa factor In sz we

(3 1 1y, (4 1. 1) ( )and (3 0) as factors because

all others have the1r 20 = (Refer to statement

2 on p.8). But (*;°) and ( 00) come out as factors
from these transvectants and the transvectants

(F, a2A)?:0 where F is any one of the above semi-
invariants except the last two,are all of the

type (”‘2“11) where m < 5. Hence they are express-
ible in terms of (3.4) and (2 5) Therefore all the
semi-invariants of type (™ 2a ) are expressible as
polynomials in the semi-invariants (3. 4) and (2. 5),
which are irreducible.
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0(2, 1), and, in this scheme, he shows that positive
and negative powers of » have tensorial transfor-
mation properties. Armstrong's scheme however
is unsatisfactory for two important reasons. First,
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pletely coincide with true one variable radial func-
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ber. As one consequence of this,no treatment of
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These difficulties are met in this paper by consi-
dering the hydrogen atom factorized into its radial
[0(2, 1)] and angular [O(3)] parts, according to the
scheme 0(4, 2) D 0(3) X 0(2, 1) of Barut and Klein-
ert.4,5 Here the true radial wavefunctions of the
variable r/n transform according to a representa-
tion of the 0(2, 1) group (Sec.II) and it is shown

that the quantity » %D, ,,.  for all positive and nega-
tive integer k,where D, 1s a dilatation operator
defined by D, f(x) = f(ax),is proportional to the gth
component of a tensor (Sec.III). The Pasternack and
Sternheimer selection rule follows naturally and,
since the Wigner—-Eckart theorem is shown to hold
{Sec.1V), calculation of the appropriate Clebsch—
Gordan coefficients (Sec.V) allows matrix elements
to be calculated. Some progress is made on the

difficult problem of off~diagonal elements of » * (Sec.

V).

I. THE GROUP SCHEME

The 15 generators L , 1 < u < v = 6,0f 0(4, 2) are
defined in terms of their action on the hydrogen
atom wavefunction written in parabolic coordi-
nates.4s5 Their commutation relations are given by

. 1, l=a=4,
[LLy]= Bl 8aa ={

—1, 5=o0=<86

A subgroup 0O(3) x 0(2, 1) can be formed with the
O(3) generators given by L5, Ly3,and L, and
the O(2, 1) generators given by L,5, L4g,and Ly,
These last generators are formed into the linear
combinations K, = Ly5 ¥ iLygand Ky = Lsgto
give the standard 0(2, 1) commutation relations6-8
of

[KoK.] =+ K, and [K. K_]=—2K,.
Consider now the entire hydrogen atom wavefunc-
tion

lntm> = R, (x,) Y ,,.(80),
where
R, (x,) = Ny e (22, L2 (2x,),

Ny =— (= 1)t 2z3/2 [("—l— 1)!]1/2,(1)
" n? (n+1)!

x,K =

Zr
L

’

and Y }(0¢) are the usual spherical harmonics. A
Hilbert space is defined by the inner product

-] n'Zn
j;o fﬂ R,,,,,(x,,,)Yl,mx,?,Rnl(xn)Ylm —Z? dxndQ

= 6(men’)6(11"), (2)

where dQ = sinédfde.
1

r 4 ’
<n+gq#t 1lm| [Ki,m Dn/(n*-q)Af ]Inl m>

+1

In the 0(4.2) D 0(2,1) x 0(3) scheme of Barut and
Kleinert,4 these wavefunctions for fixed m form a
basis of representation of O(2, 1) since

K nim> =[n % )nz 1+ 1)]V2 |0+ 1m>,
Kol nlm> =n | nlm>. (3)

The representation has only a lower bound on the
0(2) quantum number (equal to ! + 1) and is shown
below to be unitary and irreducible. Equation (3)
implies that the realization in this Hilbert space
of the generators of 0(2,1) is

ntl 2
K=*< n )Dn/(u1)(xn§z*xn*"+1> @)

and K, = »n,where D _ is a dilatation operator de-~
fined such that D, (7} = f(ar), which implies that

Dy flx,) = flx,0).
If we form the Casimir invariant
G=K§—3(K. K.+ K_K,),
we find that
f:fn RyY,n%2GR, ¥, n3%/Z3 dx,
= <nlm|Glnlm>=I(I + 1). (5)

However, Barut and Fronsdal? show that the eigen-
values of G are of the form &(® + 1). If a repre-
sentation is bounded below, its lower bound is —@.
If ® is negative, the representation is unitary and
labeled D:,. All this implies that the wavefunc-
tions | nlm> for fixed m form a basis for the uni~
tary irreducible representation D3, ;.

II. THE TENSORIAL PROPERTIES OF 7*

In this section, it is shown that the quantity »#/[(n
+ @) ¥ D s, AL, (69), where g and & are inte-
gers, transforms as the gth component of an 0(2,1)
tensor operator,the associated representation de-
pending upon the size of k relative to —2. Here

Al, is an operator defined such that

AL ()Y, = Y1 e (6)

To be specific,we can build A}, up as a power of
products Af,, or Ag_l,where

A= 2 + 3 /2
MT\T+1T-mI+1+m) 20+ 1)

X ((l + 3) cosé + sinh Zid_e_)

(see, for instance, Infeld and Hull). 8

Consider

) n+q 0 .
= q:fo fQRn'fq* llYlm xi?'fqil[( n+q )Du*q/(n*qtl) (x'”q ax'“q ¥ Xn+ g *tntg+t 1)(7! + q)xzd'gDn/(n*q)

2
(nt gz )2n dx,dQ2

. ntl ) 4
= n +qi1)x5*311Dn11/(n+qt1) X( n )Dn/(nil) (x”ax” Frotn +l>]A% Ry Yy Z3+k
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0 . ? )
= fO fﬂ Rn+qil(n +qgt l)xﬁ*g* 1[<xn*qil aon*l ¥xn»fq;tl +2+ntqg+ 1>—‘ (x,“qﬂ _——_axn+q¢1 ¥ Xp+g £l
' n+ q+1)2n
ta+ 1)] Dy/gueq Al By, v, ¢ 23«%@ V1 gy ag
@ B+2 D ’ (n + q+ l)zn
=F (k+22 7] _/;) ‘/;IR,,+qi1Y1m(n +gzx1l) X p+'gsl n/(n#qtl)Af Rnl'Yl'm T dxndQ
—F(k+2tq){n+ 11m|~—1";-p Al [ntrm> 7
=7 1 <n % (n +q 1)1 n/rgs) 1 |1 . @
I
We see then that if £ + 2 < 0, and we can write
v ; (nm |\ T X\ 'm) = QHITH)CHE,  (8)
[K:t’ nFkF2F1 D"/G“k*z)Af] =0, q n’gn?
where C,l,,klﬂ is an 0(2, 1) Clebsch-Gordan coef-

je,b+2<qg<—k—2whileifk +2> 0,

[K
Hence, if 2 < — 2, we have a representation of finite
dimension equal to — 2k — 3 labeled D_,_,, while
if # > — 2, the representation is infinite dimen~
sional and reducible,but not fully reducible;for
while the spaces g 2k + 2and ¢ < — k— 2 are
invariant under the group operations, the space
—k— 1< q=<k+1isnot. This representation will
be labeled as D’,,,. Both of these representations
are nonunitary since the eigenvalues of K, K., are
not positive definite.?7 This means we are free to
normalize our tensor operators in an arbitrary
manner,and a particular choice is made in Sec.V.

rk )
;’m D, /tn tktz)Af ] = 0.

IV. THE WIGNER-ECKART THEOREM

A well-known method for proving the Wigner—
Eckart theorem for O(3) (see, for instance,Mes~
siah9) sets up recursion relations between dif-
ferent matrix elements of the ¢qth and (g + 1)th
components of an O(3) tensor operator and shows’
that these are identical to the recursion relations
for the corresponding O(3) Clebsch-Gordan co-
efficients. This implies that Clebsch-Gordan co-
efficient and matrix element are proportional, the
proportionality constant being the reduced matrix
element. This proof in fact requires only that if
J|lm)=a)lm), then [J,T} | = a, T, ,where d, is
an O(3) generator and T}, an0(33 tehsor operator,
and that the states being coupled up be orthonor-
mal.

In the 0(2, 1) case, we first write the states cor-
responding to the representations D_,_, and

Dy, as |kq), where the use of % and ¢ distinguishes
them from the states |nl) of D?,,and the corre-
sponding tensor operator as N, a rk/(n + q)¥ 1]

D, . q)Ag’, where N, is some arbitrary normali-

n

zation. We have then that

J Kalke) = 25 QW MNyg ) lkg 1
an
[K,, T4 = £ + 2 £ QWV,,/Nyy 1)) T2, .

K, in both cases gives an eigenvalue of ¢.

It therefore follows that since the states |nl) are
orthonormal, the Wigner—Eckart theorem holds,

ficient coupling the states of D},,; with the states
of either D_,_, or D,,,,normalized as above, to the
states of D?,;, while (ll]T’*ll’) is the reduced matrix

element and is independent of »,%’, and q.

V. THE RACAH ALGEBRA

In this section, the Clebsch—Gordan coefficients
appropriate to the representations we are consider-
ing are derived. The Pasternack and Sternheimer
selection rule drops out naturally during the analy-
sis. The reduced matrix elements of T* are de-
rived, allowing the diagonal matrix elements of

7* to be calculated. A brief discussion of the off-
diagonal elements of 7* concludes the paper.

The most direct means of deriving the Clebsch-
Gordan coefficients, namely that of coupling two
representations and the contragradient of a third
to an invariant is perhaps most well known in
Bargmann's work,10 but is due to van der Waer-
den.!! Barut and Fronsdal? have used this tech-
nique to derive some 0(2,1) Clebsch—Gordan co-
efficients for unitary representations. This method
has the advantage of not requiring an explicit
form for the arbitrary normalization of the states
of nonunitary representations.

To apply this technique, we must first realize the
representations in terms of multispinors

N, £2n%, where N,, is a normalization constant and
the quantity (£, 7), called a spinor, forms a basis
for the fundamental irreducible representation of
0(2, 1), In this realization

Y PR ) 2
KO"Z(Eag T’an)’ K+—‘£an,
9
K.=—nz. )
So KN, £2n® = 3(a — bIN,, £enb and GN,, £onb =

Ha—ba—b + 2N, ,Enb,

Hence, if the eigenvalues of G and K, are, re-
spectively, ®® + 1) and m, then the states are
represented by N, £#mn®-m where N,, is shown
by Barut and Fronsdal to be equal to |[(m— 1 —
®)!/(m + ®)1]1/2 for the unitary representation
D} . As remarked above, N, is arbitrary for non-
unitary representations.

We now form an invariant coupling of two repre-
sentations and a contragradient representation

J.Math. Phys., Vol.13,No. 1, January 1972



36 M. J. CUNNINGHAM

defined as
(@, = N1Eo-mperm (10)
giving
I= T Ch N e
X Ny tggi g™, (11)

where I is an invariant in the space of the poly-
nomials of Higgsngi. However, since the represen-
tation matrices are unimodular, the only invari-
ants in this space are the three determinants
§1n3’

—E3Mg, Oy =E3m —

£y

6y = E3m3

03 = &17my —
and every monomial in these; see Bargmann.190
Hence

Q@@ ¢+m @ ~m

shefzet = 2 Col o Ny gt Mt ™ (12)
m, mapmy
XNZ‘E; ”‘zn;’ ”‘2N I &5 m 3"‘3.
This implies
ky +ky =20, ky+k, =28, (13)
ky +ky =28,
or equivalently
Ry =0 +®—8, ky=3+3 &, (14)

Ry =& + &, — &

We now note that

)" = T ()Em) )"
or s?;)o(i)(ﬁmb)"'s(— &m,)°

(ﬁaﬂb -

for all positive and negative integer #, so that by
comparing coefficients, we have

1

M (I +n)l( +n)t
((k——q)!(k +qlln—I— )l — 1" — 1)!

>1/2 ?(—_ )[

N, NN Ch%: Z)(~1)’”"” Goady. as)

my mams

Consider first ¥ < — 2. In this case the represen-
tation D, is finite dimensional, while D;'1 and D;
are infinite dimensional. Inspection of (12) shows
that this requires %, and 4, to be positive and &,
negative. Taking these constraints and subs’ututmg

o =—10—-1 by =—10'-1,
Oy =—hk—2=5—12

into (14) gives the Pasternack and Sternheimer
selection rule,namely

2<s< li—=ri+1 (16)

gives a vanishing matrix element.

To cast (15) into a useful form, we put p = z. From
(12),we see thatp + g = &5 —mg andp +7 =
&, + m, so that (15) becomes

ZI
nn’nn’

=E(~)Ml’+1+mz<
z
(k —1=7 )
X
1—1l—k+n +2z

R

X

U!'—1—n"+n+2z
<

k< —2. an

NNN o
l——l'—k—Z)

4

This formula is quite adequate as it stands (after
substituting for N),but it is of interest to note,

with Armstrong, that it can be cast into a form that
shows that this 0(2, 1) Clebsch—Gordan coefficient
is in fact equal, within a phase, to the 0(3) Clebsch~
Gordan coefficients.

To do this, Eq. (17) is expanded in factorial nota-
tion (remembering that k — ! — I’ is negative)
and identities I and II derived in the Appendix are
applied giving

+n—0—1—-HlEk+n" +1-—1)!
HE—1 + 1=l +1—1 ' — 1 —1—8))

where A contains unimportant constant terms. N, has been chosen as [(k—2—@)l(—k—2+g)l]1/2
which implies that K |kg) = F [(k ¥ q)(k £ q £ 1)]1/2]kg + 1). I the Clebsch—Gordan coefficients are now

renormalized to satlsfy the orthonormality condition

Lkl! lRL"
Ec"“,cnq,"(—— 1)

derived by Armstrong, we finish with

+ll+q

- 6([’1”)6("’””),

1 ’
Ckl

(18)

I—k—2IE+1 +2 +2)!(l—-l’——k—2)!)1/2

nqn’

-
— {(— 1\e
= ( +1'—k—11

y ((n’ —UV =) +n) ~k—2— @l + 1))1/2?(__ 1),%1(1'

FE-2+10+n)!n—1—1)!
=alkq,n|l'm"),
wherea=1if Il —1l'isevenand — i if I — I’ is odd.
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We consider now the case of # > — 2. In this case,
it is cenvenient to put » = z, giving

~1l kU
N,N,N;'C

nn’-nn’

Veten (l~l’+k+l )
+l+nt+z

*2(—1) I—U'—n" +n+z

(——2——l~l'~k—1 )
1=V —k—14n+z

The power of this technique is illustrated here, for
Armstrong, using the recursive technique of
Racah,12 derives these particular Clebsch~Gordan
coefficients for ¢ = n’ — » equal to zero only.

Since in this case ®, is positive, we cannot have
both 2, and k#; negative. Thus, if we assume

1= ', we have two possibilities, namely both
I—U'4+k+1andl' — 1 + % + 1 positive or

1—1 +k + 1 positive and I’ — I + & + 1 negative.
Since ¢ = 0 is the case of most interest, we will
consider the case of 2 + g positive; thus the first

5 <l —htk 1) ) (20)  possibility allows Eq. (19) to be transformed
F4 exactly as was Eq. (16) to give
§

(I—7 +k+21 +n')! (B +n —1—D!

k+1+q)! Fkt2 41—+l +0 Dl — 0 — 1—in—1—1—gut’ @1

f

where each N, has been put equal to 1. The second I s rk2 1 '
case tra.nsfor;ns via identity III to the same ex- - fo fan*l X1 m ¢+ 1)k—1Al'Rl*1 Fonflrdsd, 1 > (52')

pression.

Equation (20) is also proportional to the corre-
sponding O (3) Clebsch—Gordan coefficient since it
is of the same form as that taken by Eq. (5) after
the application of identity I.

The reduced matrix elements can be derived from
first principles by considering the matrix element

G+ 1Im|T I+ 1m)=Cly 2 b @ lIT D

J

The integral through  is one, and, since LZ#1 isa
constant, Eq. (22) becomes a sum of integrals of
the form
bl
f e"ox xbdx = o

provided that b > — 1,i.e.,provided that I + I’ +
E+2=0

The integral evaluates to

. 1 < 1 )1/2(z+z'+k+2)zg—z'+k+1)1 E>_ g
2 s ,
@2FE\@+1)IC+T + DI — 1) (& +1)!
or 1 L ( 1 )1/2(—k—2)!(l+l’+k+zﬂ’ b<—3.

@2\ @I+ 1)+ +1)1@~1I)! ('—1—k—2)!
However, since

' vq [ QU + 1)\172,-0 (+r+1 I+ +1)! 1/2 _
C’“““”“”“(%‘fl) C’*lo“l“(l—l)'(kn)! T—mer+n) 0 kK2R

@ + )1 = —k— A+ T +k +2)'(l+l’—k—1)'>1’2
— N+ 7 FD)! ,

QI+ -1 —1—-%

we have

11710 = g LR DU

or
L+ +k+2)!

k<s—2,

E>—2,

1 1 )1/2
2 (22)* <(l’—l-k—Z)!(l——l'——k—Z)!(l +0U—k—=1TQI +1) g

Since D, ;, = 1 and the integral through Q is 1, T'*
is proportlonal to a matrix element of 7%, dlagonal
in n, namely

fow Rr*R,r2dr = (nlm vt inl'm)
=n*Lnlm | T*nl'm), k>—2,
=nk1(—k — 2)! {nlm | Tk|nl'm),
B<—2. 23)

f

Off-diagonal elements of 7%, however, are much
harder to deal with. Placing a complete set of
states in the expression
13
(n l m IN: 7" ' /"p /nquz lnqlqm)
(where N npng is the normalization required to
make ¥ an /n,,A fz into a tensor operator) will not
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n,lm lT:p__"_r In,l,m). Thus

nylym | T, In Lm) APPENDIX: SOME COMBINATORIAL IDENTITIES
ny= rr

The addition theorem for binomial coefficients,

= (n,lm N, p,,r‘rkD,,r /n pAf!; |n,Lm) namely
502 - ()
X (n,l,m IN:p,,rD”r/np ln,1,m), gives
since D, ,, is diagonal in / and m.»3 So () b_"lE’T
(nplpmlT,,:-,,, |n, 1, m) _5 (@—0b)!(a—c)!

L) a—b—s)lla—c—s)!b+c—a+s)ls!
=2A,[ R r*R , v2dr, s Ma—c—aib+c—a+s)
qr Jo nplp nql,.
"q if x and y are positive,
where A is the infinite matrix whose elements are

(a — s)!
= k —1)s
A, =nlm ll\;pnanr,nplnrl,m). (b) ?( ) S0 -9 9!
This in principle is invertible to give - 1) (@a—o)l +¢c—a—1)!
= (— 1)¢
ble!(d—a— 1)!

<
fo Rnpzprkanlqudr = ?A;,l(nplpm |Tn’;_nq |nql,,m) .
‘ if y is negative andb >a=>c¢ = 0,
V1. CONCLUSIONS

In this paper, we have shown how to circumvent
some of the difficulties encountered when one (@—~b)la—c)!

uses the “natural” group scheme for the hydrogen blel(@a—b —c)!

atom, namely 0(4, 2) 2 0(3) X 0(2, 1), to explain

the selection rule of Pasternack and Sternheimer ify is negativeanda > b > 0,a= ¢ = 0,
and to derive corresponding matrix elements. A
complete treatment of off-diagonal matrix ele-

ments is not yet available, since in this group (c) —
scheme it is 7 #D, ,,, and not v ¥, as might be hoped, ble!

that is proportional to a tensor operator. ~Ds@@—c)l(s—a+b—1!

or

To apply these methods to more complicated atoms s O—a—1Nlsl@a—c—8)!(b—a+c +s)!
requires at least an approximate dynamical group

that can be factorized into angular and radial parts. if x is negative.

This would seem to be one of the directions in

which group theoretical atomic spectroscopy could The following are the identities mentioned in this
be heading. paper.

LY (a—n! -y (@ —b)!(a—c)!

T O—Dlc—nNld—Dile+Dt! ts@—b—s)a—c—s)lp+tc—at+ts—t)Isld—tIe+H!t’

by (a),

(@ —b)!(a— c)! b+ct+dt+e—a+s)!
T didYe) S btcre—a+s)prc—a+s)l@a—b—s)la—c—s)ls!
also by (a).
Equivalently
(@ + s)! (a—0bd)l{a—c)! d+e+c—1)!
?(b +s)!(c+s)!(d—s)!(e——s)!s!= dle! cla—b—tlle+tc—NOId+c— DI —c + DI

—Dsa—ec)lla—d)(d— s)!
tta—c—Hia—d—1flc +d—a—s +8)!(e—s)is!

II.E(—-I)S (a—s)lgb__s)| =Et

slic—s)t(d— s)!(e — s)!
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by (a),

@a—c)la—d)!b—elb+ta—-—c—d—1!

t el@a—c—OItla—d—BOl(c+d—a+)!b+a—c—d—e—1)!

by (b).
m. X (@—h! =

(a—o)!

T =B c—Old—Hle+nIt! did+e)lp—a—1)!
~1sp—a+c+d+e+s)lb—a—1+s)!

X2

by (c) and (a).

s b—a+ct+e+s)sl@a—c—s)lb—a+c +s)!

a — b negative,

Equivalently
— Ds(a +s)1(d + s)! _(a—c)l(a—d)!b! (e+d—b—1—1!
s (c+s)!(d+s)l{e—s)ls! e! t e+d—Hlc—d+t)Id—b—1—Hlla—c—BH!
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Example Related to the Foundations of Quantum Theory

E.B.Davies
St.John's College, Oxford, England
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We construct a very simple example of a statistical system which satisfies almost all of the axioms used
by various authors in the quantum logic approach to the foundations of quantum mechanics. Since the
example is not quantum mechanical, it is seen that present arguments are a long way from characteris-
ing quantum mechanics in terms of a set of physically meaningful axioms.

1. INTRODUCTION

In the last ten years, there have been a large num-
ber of papers attempting to derive the accepted
structure of quantum mechanics from certain
axioms involving the existence of a quantum logic,
a concept which first appeared in a paper by Birk-
hoff and von Neumann.! Typically these works
start with a general discussion of the statistical
nature of measurements and obtain axioms which
are either claimed to be necessary to any physical
theory of a statistical nature, or, more modestly, to
be general physically meaningful assumptions
which seem to be satisfied in quantum theory, but
each of which could in principle be refuted by ex-
periment. From the axioms, the authors attempt
either to derive the Hilbert space structure of quan-
tum mechanics, or at least a Jordan algebra whose
states are the states of the physical system.

We mention a few papers among the very large
number in the field. Pool? discusses a collection
of axioms which are representative of those
generally taken in studies of quantum logic. He

does not claim to characterize quantum mechanics
and, indeed, pathological systems of this degree of
generality are known,3 The papers by Zierler,4
Piron,5 and Gunson® have come close to a charac-
terization of the von Neuman model of quan-

tum mechanics in terms of physically plausible
assumptions. The first two authors base their
work on detailed assumptions about the partially
ordered orthocomplemented set, while Gunson uses
a quite different algebraic approach.

In this paper, we consider in detail one very simple
example of a statistical system, whose properties
indicate that quantum mechanics is only one of a
large class of statistical theories with very simi-
lar general properties. Our example satisfies all
the axioms of Pool but cannot be described in
terms of any Hilbert space or Jordan algebra.
Moreover, the example satisfies all the axioms of
Gunson except for one technical condition which
seems not to have any physical interpretation even
though it is the crucial assumption in Gunson's
arguments.
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work on detailed assumptions about the partially
ordered orthocomplemented set, while Gunson uses
a quite different algebraic approach.

In this paper, we consider in detail one very simple
example of a statistical system, whose properties
indicate that quantum mechanics is only one of a
large class of statistical theories with very simi-
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We do not suppose the example has any direct
physical significance, but just use it to prove that
the structure of quantum mechanics cannot be de-
duced from purely philosophical discussions of its
statistical nature, and also that present arguments
are a long way from reducing quantum theory to
any collection of physically meaningful principles.

2. THE EXAMPLE

The particular example is set up to describe the
internal degrees of freedom of a conceptual ele-
mentary particle, and is finite dimensional. The
example can be conveniently described within the
framework of Ref. 7, where the basic notion is the
set of states.

We let V be the real three-dimensional vector
space of triples (a4, a,, a3), where o, € R for
i=1,2,3. V is given the positive cone

V+ = {(ay, @y a3): 0 < log] + lo,l < aj)
and the positive linear functional
(aq, ay, a3) = ag.

The triple (V, V*, 7) is called the state space and
the set

K={pec v+: 1(p) = 1}

is called the set of normalized states. K is a com-
pact convex set (a square) and it has four extreme
points

a = (ls 07 1)) b = (09 1’ 1),
a = (— 1,0, l)y b’ = (0,— 1, 1):

which we call pure states. It is convenient to work
with unnormalized states (elements of V*).

An operation is defined as a positive linear map T:
V— V such that 7[Tp] < 7[p] for all p ¢ V*+, and is
interpreted as a description of a test on an ensem-
ble of copies comprising a state p € K, where 7[Tp],
which lies between 0 and 1, gives the proportion of
the ensemble being passed through the test and
(Tp)/7[Tp] gives the conditional output state pro-
vided that 7[Tp] = 0. The two notions of state and
operation are all that are really necessary to
describe a statistical system. However, to relate
our example to the quantum logic approach, we
need to discuss the idea of repeatability of
measurements.

It was recognised by Birkhoff and von Neumann,
and most subsequent authors, that the importance
of projections in quantum mechanics is related to
the repeatability hypothesis (see also Ref.7). Now
while position and spin measurements on single
particles can be considered as repeatable, the
great majority of measurements in physics are not
of this type. For example, measurement of the
energy of a bound electron in an excited state is
done by observing photons emitted during transi-
tions, so that this kind of observation is the oppo-
site of repeatable. In second quantized theories
there seem to be no repeatable observables in
common use. For example, in quantum optics, 8
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one can find the distribution of the number of
photons arriving at a counter within a fixed time.
The expected number of such photons can be calcu-
lated from a self-adjoint operator, but the distribu-
tion is not obtained from the spectral resolution of
that operator. In high energy physics only the co-
efficients of the S matrix are ever actually mea-
sured, and for these the repeatability hypothesis is
meaningless. Finally the fact that position obser-
vations for photons cannot be describedinterms of
projection-valued measures® seems to be related
to the fact that observation of a photon involves its
absorption and annihilation, so that repeatability is
violated.

In spite of these doubts about the fundamental
nature of the repeatability hypothesis, we now
formulate it mathematically and determine its
significance in our example.

We define a filter as a pair §, §; of operations
satisfying

1) 7[8p + &p]= 7[p]
(i) &6;p=0,6;p for anyi,j,

(iii) if 7[6,p] = 7[p],then §,p = p for i = Oor 1.

A filter is interpreted as a procedure for dividing
an ensemble into two subensembles depending on
the result of some test. The first condition states
that every member of the ensemble is put into one
of the two subensembles. The second states that if
the test is repeated, then the result is still the
same and the states are not modified at all by the
second measurement. The third states that if all
copies of an ensemble give the same result in the
test, then the state after the test is the same as
that before.

forallpc V,

There are two simple filters, whichwe callN and Y,
given by
NOP =P,
Yoo =0,

Nip=0

1 } forallp e V.
Yip=p
To classify all filters, one has only to observe that,
given a filter different from the above two, the sets
S;={pek:8p=p}

are disjoint, nonempty, proper faces of K. More-
over, the linear functional

Alp) = 1[84p]
satisfies 0 < A(p) < 1 for all p € K and

So=1pcK: Ap) =0}, S;,={peck: Ap)=1}.

So=1pcK: §,p = 0},

Simple case considerations now show that S, and
S, must be opposite vertices of K. The most
general filter can now be written down as follows.
Choose two opposite vertices of K, say a and a’, and
a linear functional A on V such that

{at={pck: Ap) =0}, {d ={pek:Ap) =1}.
Then define

8op) = {7lp] — AP} @/,  84(p) = Alp) = a(p)a.
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It is seen that the filter is uniquely determined by
the functional A. However, there exist an infinite
number of filters for each pair of opposite vertices
of K.

We can attempt to make the set of filters into a
partially ordered orthocomplemented set. The
complementation should clearly be defined by
We consider two possible definitions of the im-
plication relation, namely

(i) &— 1% means 7[8,p] < 7[F;p] for all p € V*
(i) 6 - ,¥ means if p € V* and 7{8,p] = 7{p],
then T[glp] = T[p],

The first of these definitions was used by Piron5
and the second by Pool.2 it may be seen that, in
this example, there exist two different filters &, &
such that § » ,F and § - ,§, so that —, does not
define a partial ordering. The first definition is
statistical rather than logical in nature, and turns
the set of filters into a partially ordered ortho-
complemented lattice.

We have shown in Ref. 7 that in quantum mechanics
the filters correspond one-to-one tothe projections
and that in this case the definitions —; and —, coin-
cide; indeed, this was remarked by Birkhoff and von
Neumann.! Within this context our system there-
fore has significant differences from quantum
mechanics. This can be overcome by defining the
set of questions to correspond to a subset of the
set of filters in some arbitrary but convenient
manner. We now discuss one particular choice of
the set of questions.

We define V, V*, 7, and K as before. We define @ to
be the following set of functionals on V:

0(p) =0, 1{p)= 7[p],
A(Ol, B’Y) = %Ot + %')” B(Ol, B, 7) = IEB + %7’
A'=1—A, B =1—B8.

For X,Y € @ we define complementation by X’ =
1 — X and implication X = Y by X{(p) < Y(p) for all
p € V*. This turns @ into an orthocomplemented
lattice. We define P: @ X K - [0, 1] by

P(X,p) = X(p).

We define an operation §,: V — V for every X € @
as follows: §,(p) = 0 and §,(p) = pforallpe V.
For any other X € @, let x, be the unique norma-
lized state such that P(X, xy) = 1 and define §; by

gx(p) = P(X:p)xx-

It may be easily verified that K, @, P is an event-
state structure in the sense of Pool? and that K, @,
P, & is an event-state-operation structure, except
for a slight technical difference in the definition of
an operation.

Our example also satisfies all the axioms of Gun-
son® except for his Axiom A. 10 which states
essentially:

“There exists a one-to-one linear map o: V-V’
which maps the cone V* onto a dense subset of the
positive cone of V', taking pure states into atomic
propositions and such that {g, o(f)) < 1 where f, g
are pure states, equality being attained only for
f=g7

However, our example does satisfy this axiom pro-
vided the single word “dense” is deleted. Gunson's
density assumption seems not to have any physical
interpretation, but to be a mathematical device
introduced in order to use the theory of self-
adjoint cones. We remark alsothat evenif there is
a one-to-one correspondence between pure states
and atomic propositions, we see no physical reason
why this should have a one-to-one linear extension
as Gunson supposes, even though our example does
have this property.

Finally we remark that our example is by no
means exceptional. The set K may be replaced by
any convex body in any number of dimensions or
even by any compact convex set in a locally con-
vex topological linear space. By suitable choices
of K, one may obtain classical probability theory,
quantum mechanics, or a large variety of other
statistical theories. We do not, however, maintain
that any conceivable statistical theory can be
represented in this manner.
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Erich Zauderer
Polytechnic Instilute of Brooklyn, Brookiyn, New York
(Received 15 September 1970)

Assuming Z (the nuclear charge) is large, it is shown, using a theory of McKelvey, how a uniform asymp-
totic solution of the radial Schrédinger equation for an electron bound in a central field potential and
for a related problem may be obtained. Requiring the asymptotic solutions to be bounded leads to a

determination of the energy expansion parameters.

1, INTRODUCTION

The radial Schrédinger equation for an electron
bound in a central field potential has been studied
by Iafrate and Mendelsohn,1,2 using a method which
combines a large-Z (the nuclear charge) asympto~
tic expansion theory with the conventional perturba-
tion theory approach, Applying the stretching and
matching method (occasionally referred to as the
method of matched asymptotic expansions) familiar
in fluid dynamics, they match the “outer” large-Z
asymptotic expansion to the “inner* perturbation
theory expansion, thereby specifying unknown

terms in both expansions. This method has also
been applied by Mendelsohn3 to a repulsive central
field potential problem for a one-electron ion,

In this note we observe that the relevant Schrodin-
ger equations for the above problems belong to a
class of equations of the form

d?u
dx2
for which McKelvey4 obtained uniform asymptotic
expansions when Z is a large parameter, McKel-
vey's approach is based on the related equation
technique developed by Langer for turning point
problems and results in an asymptotic expansion of
u(x) in terms of Whittaker functions and their
derivatives. On applying McKelvey's method to the
aforementioned Schridinger equations, it will be-
come necessary to expand the energy in inverse
powers of Z in order that the solutions remain
bounded, The resulting asymptotic expansions are
uniformly valid in the “inner” region, i.e., near the
origin, as well as in the “outer” region, and do not
require any “matching” to be carried out, The ex-
pansions will be compared with those obtained by
the matched asymptotic expansion and will be seen
to be closely related because of the special form
of the problems. We do not examine any particular
case in detail or obtain explicit uniform asympto-
tic expansions, but rather rely on the method of
McKelvey and the general form of his asymptotic
solution to draw certain conclusions. Detailed re-
sults have been obtained by Iafrate and Mendel-
sohn!~3 for these problems using their method,
and they have compared their results to other
work.

[Z2¢2(x) + Zx1¥(x, Z) + x27]u(x) = 0, (1)

2, THE UNIFORM ASYMPTOTIC EXPANSION

The radial Schriodinger equation for an electron
bound in a generalized central field potential of the
form

) =—2B0w) =-2 f‘}B(mj Bp=1 (2
V*r_-;,— r) = rj=0,~ ’ o~
can be written as
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142 1 d z 1 M0+1), _
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We also consider the Schrodinger equation for a
one-electron ion in a repulsive central field poten-
tial of the type considered by Mendelsohn3

1 &2y 1lday 2Z Ny =
T2 gy2  rar FY T =Ey, (4

where N is a positive integer, To bring (3) and (4)
into the general form (1), we set

w(r) = (1/7)v(r) (5)
to obtain for (3)

v"(r) + [2E + (22/7)B(w) — (I + 1)/r2 () = 0,
(6)

and for (4) an equation like (4) except that the first
derivative term is absent. As A — 0 in.(4) and (6),
we expect that the energy E reduces to that for the
hydrogen atom, That is,E —» —3Z2/n2 as A — 0 in
(6), where # is the principal quantum number and
E - — £ 72 in (4), where only the ground state is
considered. We assume that £ has an expansion of
the form

[ o]
=—3€2Z+ )3 €,2°m, N

m=-1

with € and ¢, as yet unspecified, Letting X = €7 in
(6), dividing out €2, and using (7), we have

I xZ) €, 2™

2Z A m:—lm_
” |72 __ 2Z plXt Tmemam
v"{x) zZ B(x)-l' 2

+ Z_‘U_ll] ox) = 0. (8)
xz

A similar equation with the x~2 term absent re-
sults from the modified form of (4).

Equation (8) is now in the form (1), and we may
apply McKelvey's theory to it. We have divided
out €2 in (8) since ¢2(x) is assumed to be norma-
lized so that ¢(0) = 1. Further, ¥(x, Z) in (1) has
the form

U(x,Z) = Y(x) + (9)

j=0 Zi't’
where y/(x) and y;(x) are nonsingular at the origin
and analytic, so that ¥(x, Z) corresponds to the
two middle terms in the bracket in (8), implying
that B(A»») must be nonsingular and analytic. Also,
the term 7 in (1), which is required to be constant,
corresponds to /(I + 1) in (8). Similar statements
apply to the modified form of (4) except that 7 = 0
in that case,
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Applying McKelvey's method to (8), where Z (the
nuclear charge) is assumed to be large, we set

Ex,Z) = 22Zx (10)
and obtain as the related equation
d—%f—) —(%— B2 o ’(l; 1)) M) = (11)
where

k(Z) = (12)
with the K, to be specified and

K=1/e, (13)

For the modified form of (4) we also obtain (11),
but with the £~2 term absent, In terms of a suit-
able solution M(£) of (11), a uniform asymptotic
solution of (8) or the modified form of (4) is ob-
tained from McKelvey's theory in the form
o) = Flx, 2M(E) + 273606, 2) (s LAE) |
where F and G are expanded in the form (9) and
depend on the parameters ¢, ¢,,,K,, and B;.
McKelvey specifies F and G so that they are boun-
ded at the origin and analytic. This is done by
exhibiting a set of equations for quantities which
comprise F and G and showing how appropriate,
unique choices for the K,, lead to boundedness

and analyticity for F and G.

Introducing two linearly independent solutions of
Whittaker's equation (11) into (14) yields a funda-
mental set of uniform solutions of (1) or more
specifically (8) in our case. The type of problems
that may be solved for (1) depends on the behavior
of solutions of (11). In our problems for the
Schridinger equations (3) and (4), we require that
Y be bounded. In view of the analyticity and boun-
dedness of F and G in (14), this implies that we re-
quire bounded solutions for the Whittaker equa-
tion (11), This can only be achieved for values of
k(Z) such that

HZ)=7r +(1+1) =mn, (15)
where 7 is an integer and it will be seen in the fol-
lowing that » is the principal quantum number. For
a continuous domain of values of Z, (15) can be
possible only if

BZ)=K (16)

so that all the K,, = 0 and € = 1/7 in view of (13).
The solutions of (10) then take the form

M(¢) = £ exp[— £/2]Li.l.+(ll+1)(§)

apart from a multiplicative constant. The L2(£)
are Laguerre polynomials,

(17)

Since all the K, must vanish, we can no longer
assure the analyticity and boundedness of F and G
at the origin unless the extraordinary case pre-
vails that the K, may be taken to be zero at each
step of their specification. However, the energy

expansion terms ¢, are as yet unspecified and are
available to take the place of the K, in McKelvey's
equations for specifying the analytic and bounded
behavior of F and G at the origin, We have car-
ried out the necessary calculations for the first
few ¢, for the modified form of (4). It was seen
that they can be uniquely determined and that they
permit the first few terms in F and G to be speci-
fied as in McKelvey's theory. That is, they take
over the role of the K. The results obtained
agree with those of Mendelsohn.3 Similar calcula-
tions for (8) appear to be extremely laborious be-
cause of the particular method used by McKelvey
in obtaining the uniform asymptotic expansions,
Recently, simplifications have been achieved in the
problem of obtaining formal uniform asymptotic
expansions for a large class of turning point prob-
lems,%:6 and the ideas applied there, can no

doubt be used in McKelvey's problem, For this
reason, we have not tried to determine explicitly
the ¢,, F,and G, which result for Eq. (8). However,
we return to this question in the next section when
we compare the uniform expansion method with
that of matched asymptotic expansions.

3. DISCUSSION AND CONCLUSION

In the large-Z expansion theory of Mendelsohnl~3
a formal *“outer” expansion of the form
0

Y(r) = exp[— ZS(r)] Z_}Oam (r)z-m (18)

is assumed to satisfy (3) or (4). Introducing (18)
into (3) or (4) and setting coefficients of different
powers of Z equal to zero yields a set of equations
for S(r) and the @ (). The appropriate solution of
the equation for S(») is
S(r) = r/n, (19)
where n is the principal quantum number, The
a, () can be solved for recursively and determin-
ed up to a set of constants, They may become
singular at the origin where (18) is not necessarily
expected to be valid, The conventional perturba-
tion theory approach is identified by Mendelsohn
with a stretching of the coordinate  near the ori-
gin,i.e., introducing a new variable ¢ given by

E=2zr (20)

and expanding the solution \IJ(E) of the stretched
differential equation in the form

T(E) =

where w = )/Z for (3)and w = A/Z¥*2 for (4), This
gives the “inner” expansion. In addition, via a per-
turbation theory argument, E/Z2, where E is the
energy term in (3) and (4), is also expanded in
powers of w as in (21). This expansion of E is used
not only in obtaining (21) but also in obtaining (18).
Requiring the ¥; to be nonsingular near the origin
leads to a unique determination of the energy ex-
pansion coefficients to arbitrary order. The equa-
tions satisfied by the ¥; are closely related to (11)
except that for j > 0 they are inhomogeneous equa-
tions, Once the perturbation expansion (21) is

_ﬁo ¥ (E)w), (21)
j=
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obtained, undetermined constants in the a,(r) and
\Ilj(é) are specified by applying the matching proce-
dure, It was observed by Iafrate and Mendelsohn
in the cases they considered that the perturbation
theory result to a given order is obtained by using
the large-Z expansion (18) to some order and ex-
pressing it in terms of the stretched variable £,
We note that both y(r) and ¥(Z7) contain the mul-
tiplicative factor exp[— (Z/n)r].

The uniform asymptotic expansion (14) is seen to
involve the two variables x = 7/n and £ = 2Zx =
2Zr/n = 2 &£/n, so that it simultaneously involves
the unstretched variable r and the stretched vari-
able £, This dependence on two variables is a
common feature of uniform asymptotic expansions
and distinguishes them from the “inner” and
“outer” expansions of the theory of matched
asymptotic expansions [Egs, (21) and (18) in our
case], each of which involves only one variable

for one-dimensional problems. By expressing the
uniform expansion in the stretched and unstretched
variables separately, one expects to retrieve the
inner and outer expansions, respectively, In gene-
ral, the solutions of the related equations of the
uniform expansion theory involve higher transcen-
dental functions such as Whittaker or Airy func-
tions which have markedly different behavior for
small and large values of their arguments. In our
special case, the functions M(£) and M'(£) have the
simple form of the product of an exponential term
with linear exponent and a polynomial, Expressed
in terms of 7, the exponential occurring in M(£) and
M'(¢) is exp[— (Z/n)r], which is identical to that
arising in (18) and (21), Letting £ = 2Zv/n, we may
write the uniform expansion for ¢ in the form

W) = exp(— ?) [-}F(x 2M(8)et/2

+ Zl;c(x, Z) (é 51_1\%5_)) eglz]

and rearrange the terms in the brackets in decrea-
sing powers of Z. This gives rise to an “outer”
expansion form (18). It suggests that we may be-
gin by directly using the “outer” expansion and re-
quiring the solution to be nonsingular at the origin.
On the other hand, if we set v = £/Z and ¢ = 2¢/n
in (22) and expand the terms in the second bracket
in the form (21), we should get the perturbation
theory result of Iafrate and Mendelsohn, Now, in
the uniform expansion for (4) the Laguerre Polyno-

£=22r/n (22)

mial that enters in (17) is L§ = 1 so that the dis-
tinction between the stretched and the unstretched
variable form of (22) involves only a linear term
in £ which enters in M(¢) and M'(£), In that case,
the uniform expansion is practically identical to
the “outer” expansion form (18). For the problem
inéllq%ving (3), thezrlglare two Laguerre polynomials,
Ly q-p&) and L, 717 ,.1)(£), which enter into (14).
In the perturbation expansions obtained by Iafrate
and Mendelsohn,1,2 a number of Laguerre polyno-
mials enter, all having the same upper index 27 +
1. Via recurrence properties of the Laguerre poly-
nomials, they can all be expressed in terms of the
above Laguerre polynomials. Since, in expanding
{22} in terms of £,all the functions must be ex-
panded in power series and every poiynomial can
be expressed in terms of Laguerre polynomials,
it is difficult to relate the perturbation theory ex-
pansion to the uniform expansion in a direct way,
Again,however,the uniform expansion is very simi-
lar to the “outer” expansion (18) since only poly-
nomials in the stretched variables enter in (22).

In conclusion, we observe that the uniform asymp-
totic solutions of (3) and (4) are not identical in
form to either the “outer” or “inner” expansions
of Jafrate and Mendelsohn, However, in view of the
simple form of the solutions M(£) of the related
equations, given in (17), the uniform expansion is
very similar in form to the “outer” expansion (18),
Thus, while we have not proven directly for all
cases that bounded uniform solutions can be obtain-
ed by a unique specification of the energy expan-
sion coefficients, the results of Iafrate and Mendel-
sohn imply that it is so. The ease in matching the
“inner” and “outer” expansions to any order that
was experienced by Iafrate and Mendelsohn can be
explained by the similarity in the uniform and the
“outer” expansion forms. That is, the “outer” ex-
pansion is, in fact, valid up to the origin, with
appropriate choices of the energy expansion coeffi-
cients ¢, . Thus a need for “matching” is obviated
as we essentially have a uniform “outer” expansion,
Finally, we note that to apply McKelvey's method to
(6) we need only assume a priori that E = 0(Z2)
and not necessarily the expansion given in (7).,
However, if we then require bounded solutions, the
K, must be zero, for all m. This implies the given
equation must have a form which, in fact, leads to
the choices K,, = 0 in the process of their specifi-
cation. This can be achieved, in general, only if E
is expanded in the form (7) with appropriate values
of ¢,.
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Recently, Araki has proved ray continuity for the measure-space realization of the CCR's. In this paper,
stronger continuity properties of this realization are derived, from which Araki's result follows as a
corollary. It is shown that V(g) is continuous on complete metric subspaces of U for any metric
stronger than the weak topology. Surprisingly no further assumptions on the measure are needed. If

'01r is an F- or LF-space, V(g) is continuous on the whole of U, . These results are equivalent to certain
continuity properties of the Radon—-Nikodym derivative of the measure. Via these, it is then shown

that every quasi-invariant measure on a nuclear F- or LF-space, such as S or D, is a superposition of
ergodic measures. In the derivation, their close connection with irreducible representations of the

CCR's is exploited.

1. INTRODUCTION

It has been known for some time that the canonical
commutation relations (CCR's) of quantum field
theory or of statistical mechanics for infinitely
many degrees of freedom are closely related to
quasi-invariant measures on infinite-dimensional
vector spaces.1™ Even though the explicit form

of the measure is not always easy to obtain, its
very existence does lead to new structural insights
into the CCR's.5:6

Given two real linear spaces U, and U, and a bi-
linear form (f,g) on U, X U,,a family of unitary
operators {U(f), V(g);f € V,,& € U, } in a Hilbert
space X are said to satisfy the Weyl commutation
relations if

U(fl)U(fz) = U(fl +f2)
V(gl)v(gz) = V(gl +g2)
V(8)U(f) = expli(f,8)} U(NV(8).

This family is called a represeniationof the CCR's
over Uy X U, if the bilinear form is nondegenerate
and if U(Af) and V(Ag) are strongly continuous in
the real variable A (“ray continuity”). In what fol-
lows the nondegeneracy of the bilinear form is not
important and will not be assumed.

(1.1)

Now consider for the moment a normed measure
on U}, the algebraic dual of some real linear space
U, (a subspace of U} will also do; detailed mea-
sure-theoretic definitions will follow in Sec. 2).
Let U, be a subspace of V% and let p be U -quasi-
invariant. Then, writing F(f) = (f, F) for the action
of a linear functional F € %, one can define uni-
tary operators U(f) and V(g) in the function space
L2(V3, w) by

UG (F) = et o(F),

du(F 1/2
V(o) (F) = (—%——m oF +g). (L9

(1.2)

These operators satisfy the Weyl commutation
relations, and unitarity follows from u(U3) = 1.
Furthermore, the vector @ € L2(U}, ),
QF) =1, (1.4)
is cyclic for {U(f)}. Conversely, Arakil has
shown that every representation of the CCR's with
cyclic {U¢f)} can be brought into this form, except
for an additional phase factor a g(F) in the expres-
sion for V(g), satisfying

agl(F)agz(F +gy) = agl"gz(F)' (1.5)
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Hence Eqgs. (1.2) and (1.3) are, so to say, the
standard measure-space realization of the CCR's
or Weyl relations for given pu. Only quite recently,
however, Araki? has shown that these operators
satisfy ray continuity. For U(f) this follows tri-
vially by Lebesgue's bounded convergence theorem

lo(, o —ol2
= [lerG.P — 1{2]|(F)[2duF) - 0

for x, = 0, but for V(g) this is not at all obvious.

In this paper we investigate this standard realiza-
tion of the CCR's for stronger continuity proper-
ties of V(g). For U(f) one can again apply Lebes-
gue's bounded convergence theorem to obtain
stronger continuity properties if, instead of U}, one
uses a topological dual.8

It turns out that, if a subspace of U is a complete
metric space for some metric topology stronger
than the weak topology, then V(g) is already con-
tinuous on the subspace in this metric. Surpris-
ingly, no further assumptions on U, and p are
needed, nor do separability conditions enter. From
this, continuity of V(g) on all of U_ follows if U,
is an F- or LF-space,e.g.,a Hilbert space, the
space S or D of Schwartz. Araki's? result on ray
continuity is also a simple corollary (a short and
direct proof is also given).

At the end of Sec. 3 the equivalence of these results
to continuity properties of the Radon—Nikodym is
pointed out.

Finally, the results are applied to the decomposi-
tion of quasi-invariant measures into ergodic ones.
The latter correspond to irreducible representa-
tions of the CCR's. Recently, Hegerfeldt® has
shown that every representation of the CCR's of
the Garding-Wightman type and every continuous
representation over a nuclear test function space
such as S or ® can be decomposed into a direct
integral of irreducible representations. Applica-
tions to ergodic measures were also given. Now
we use these results and the continuity properties
of V(g) to show that every quasi-invariant mea-
sure on a nuclear F- or LF-space is a super-
position of ergodic measures.

2. BASIC NOTIONS

For the convenience of the reader, we review some
basic notions and lemmas which will be of use in
later sections. For additional information see
Umemura? and Hegerfeldt.6

Let U be a real vector space, with elements f,....
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Denote by O* its algebraic dual, consisting of all
linear functionals on V. Let U7 be a linear sub-
space of U*, with elements F, ..., and construct
a family of subsets of U7 in the following way.
First consider subsets of V' defined by an F €
V1, f € U, and a positive number A as

O(Foyf; A)

where (f, F) denotes the action of the linear func-
tional F on f. These sets form a base for the weak
topology on UT. Denote the o-ring generated by
these sets by ®(VT, V). Its elements are often
called the Borel sets of V1.

Now let U; be a subspace of V. We denote by
®(0T,V,) the o-ring in V' generated by all sets
O(F,.f, A) with f € U,. Evidently &(0%,U,) is a
sub-o-ring of ®(VT, V), If Wis a finite-dimen-
sional subspace of U, then the sets in ®(VT, W)
are called cylinder sets with base in W, Geometric
visualization is easy. Denote by W+ the subspace
of VT orthogonal to ‘W. Then such a cylinder set
A consists of cosets A = A + WL, Since Ut/W:
is finite dimensional (it is isomorphic to ‘W if

O separates U, i.e., if VT is large enough), the
representative points of A in Uf/W+* form a
finite-dimensional Borel set, the “base”. Denote
by 7., the canonical map of Ot onto VT/W 4,

Ny : VT — VT /W4,

Then L B(V7, W) consists of all sets of the form
(A) with A € V1/W ! being a Borel set in the

f1n1te dimensional space U/Wt, It is clear that

®(V1, V) is the o-algebra generated by all cylinder

sets.

From Eq. (2. 1), one sees that (0T, V) and

®(V1,"W) are invariant under translations by arbi-
trary elements of VT,

={F e U I(f,F—Fy)l<1a}, (2.1)

2.2)

By a measure p on U7, we mean a countably addi-
tive positive set function on the Borel sets of V7.
The restriction of g to ®(VT, W) is denoted by .
From the preceding discussion it is clear that
p.wdefmes a measure {i,, on the finite-dimensional
space V1/W: by

@) = ool ).

A measure v on U7 is called absolutely continuous

with respect to u, v << p, if p(4) = 0 implies v(4) =

0,for A € B(0, 7). Note also then that v < p
and i7 < ”'w

Let U, be a subset of V' (in general, U, will be a
lmear subspace). For given pand g € 'O ,one
obtains a translated measure pf by

2.3)

ue(A) = p(A + g). (2.4)
The measure u is called 'O,r-quasi-invariant if
u(A) = 0 implies p#(A) = 0 and vice versa. Note
that in this case ., is also U, -quasi-invariant
and that fI,,is quam invariant under n,w('() ), the
image of '(.3'7 in V/Wx,

Now let u be a bounded measure on O, u(V%) =1
say, and consider the Hilbert space of all complex-
valued p-square-integrable functions on VT, X =
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L2(0*, ®(V*, V), p). The functions of the form ¢ (F)
=eiUF) fe U, are total in . Hence the vector
Qe X,

QEF) =1, (2.5)
is cyclic for the operators {U(f);f € U} defined
as multiplication by ei(.%), If W is a finite-dimen-
sional subspace of U, we define JC,wto be the closed
subspace of JCobtained by restricting f to W,

_Giomrew

¥, ={eiv-N;f e W} (2.6)
Note that, if ¥ € I, then Y(F) is constant within
W-_-cosets, and is thus essentially a function on the
finite-dimensional space U/, Let P be the
projector onto JC

P,3x =13,,. 2.7
The family of all finite-dimensional subspaces of
U forms a directed set by inclusion since, for given
W, and W,, there is always a ‘W such that W > W,
and WD W,, Hence this family can be used as an
index set for generalized sequences (nets1©). One
has the following simple result.

Lemma 2.1: st — limP

Wt
and € > 0, there is a W, such that for all W > W,
one has llP o —opl<e.

= l,i.e.,given ¢ € X

Proof: By the cyclicity of {U(f)} there exists
a'W,and a wwo € Ko, such that

lo — wmll < e/2.
If WD W,,one has P, tl/.wo = zl/,wO and thus
IP - = — J—
1Pyo ol <P (o —w ) + 1Py _ — ol éﬁb

The next lemma is contained in Umemura® [Sec. 3,
Eq. (5)] and Hegerfeldt5 [Eq. (6. 2)].

Lemma 2.2: Let v < p with »(07) < ©,and
put a(F) = [dv(F)/du(F)]/2. Thena € i = L2.
Putting P,, @ = a,,, one has, for each finite-dimen-
sional W and u,almost all F € U7,

0<a (F) < (de(F)/duw(F))l/z. (2.8)

Proof: One has
dv
Ad = 1
fdudu_v("())<°0.
Hence ¢ € X. Now let A be a cylinder set,A €
®(VT, W), and let x, be the characteristic function.
Then one has x, € X, and
0 < (XA,a) = (xA,aW>.
Hence 0 < a_ (F) for g, almost all F since a,,€ IC_.

From Py, x,d = x4, and P (x,a)li<llx,all, one
obtains
S xatF) la (F) 1 2du(F) <

-

—fodV —fod,, dp.
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Since a,,(F) and de/du,w are constant within W+ -
cosets, Eq. (2. 8) follows. QED

For sequences the next lemma has been proved by
Umemura.? For nets the procedure is similar.

Lemma 2.3: Let v and a be as in Lemma 2. 2.
Then a is the normlimit in 3¢ = L2 of (dy, /
dp )1/2 w
w 4

— a(F)|2du(F) = 0.

/
de(F)f 1/2 (2.9)

tim | gdu_w(F)
Proof: Define b,,(F) by orthogonal decomposi-

tion

a =
a'W

By Lemma 2.1,b,,

+b‘w'

— 0 in norm, and by orthogo-

nality
Dy 2 dv 2) ap = I, |I2
NG = @) au= [ (gr— @7 au=lo,l2.
(2.10)
By Eq. (2. 8) one has
dv., dv. \1/2 2
W 2 > W —
Aty 4" 2 |:<d“'w> o
and with Eq. (2. 10) this yields
dvy, 1/2 v 1/2
H(m) —al<l () — gl + ol
< 2[lb,, | — 0. QED

The last two lemmas play a central role in the next
section, where u will be a quasi-invariant measure
and where v will be identified with ps.

3. CONTINUITY OF V(g) AND OF THE RADON-
NIKODYM DERIVATIVE

Throughout this section U, will denote a real
linear space and U} a subspace of the algebraic
dual U%;furthermore, U, will denote a linear sub-
space of V] and p a U -quasi-invariant normed
measure on VJ. It is not assumed that U, sepa-
rates U,,1i.e., it may happen that,for some f €

V,, (f,8) = 0 for all g € U,. The weak topology
w?‘Uﬂ,'Oq,) on U, is defined as usual:g —g, weakly
if and only if (f,g.) = (f,&) for each f € V,. As
before, W will always denote a finite-dimensional
subspace of U, and New the canonical homorphism
of U} onto V}/W+.

For greater transparency, we divide our procedure
into several steps.

Lemma 3.1: Lety eI = L‘%,where pis U, -
quasi-invariant and normed. Then

W Gl%) 1/2> = [auF)¥(F) (f’_’%zf_i'"(_;)_g)) 1/2

is weakly continuous in g € U, , for each finite-
dimensional W C W,

Proof: As before, denote by ﬁ.w the measure
on U}/W* induced by p.,. We have, for some in-
tegers m sn <, that nw(’OD = ‘D‘;/'Wl can be iden-

tified with R" and 7_,(V,) with R™ C R*, Let A be
a Borel set in R® w}gh characteristic function
Xa{x). Letting X vary over R” and noting that
xal + A) is measurable over R™ X R one finds
by Fubini's theorem,

o) = [imdm™ [ dl)xs (v +2)
= [l [ mdmax, b +2).

From the second equality, one finds that (4 + ;)
= 0(A) and, for bounded sets I,, C R™,

.1

o(l,, X Rwm) < o, (3.2)
Hence o defines an R ™-invariant o-finite measure
on R”. Furthermore, o(4) = 0 implies (A + »)

= 0 for almost all A, and 50 [i.z(A) = 0 by quasi-
invariance. Conversely, uyfA) = 0 implies o(A =
0, and hence o and re equivalent. Thus, if dfi,{x)
= p(x)do(x), one has

dilglx + ) _ Pl +2)

dlg(%) p(x) 3.3)
Now, putting x = 7. (F) and n_(8) = £, we find
aps 172 [aue\ 1/2 2
(=) - (32
r (dﬁw(x + §)> 1/2
Tl T digl)
. 5\ 1/2 2
- <d—p%f%——m | dm )
= fRn ol +2)172— [p(x +§o)]1/2|2do(x)(.3 X

If ¢ - g, weakly, then g = g, in R™ and the right-
hand side converges to zero [for continuous func-
tions this follows.from Lebesgue's bounded con-
vergence; these functions are dense in L2(R*,0)].
From this the statement follows immediately.
QED

The next lemma is the corner-stone of this sec-
tion. The results announced in the Introduction
will be derived directly from it.

Lemma 3.2: Let p,U,,%,Q, etc., be defined
as before and let V(g) be given by Eq. (1.3). Let
U, be a subset of U,,and let 7 be a topology on
U, for which (f, g) is continuous on U, , for each
F€ Uy ie., 2 uw(0,,0,). Let 0 < Yy(F) € Xy,
for some W,. Then <¢mV(g)Q> is an upper semi-
continuous function on U, . K, furthermore, (2, V
(¢)Q) is continuous at some g, € O, ,then (¥, V
(g)@) is continuous at g, for arbitrary ¢,y € &

Proof: Defining a# and a®,analogous to Lemma
2.2, with v = p#, one has, for W D W, and for each
g€,

Wo, V(2)Q) = (o, @5 < Wy, [@uEy, /diug)1/2). (3.5)

By Lemma 2.3, ¢/, V(£)) is the limit of the
right-hand side; hence it is also the infimum over
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all ' W> W,. The right-hand side is 7~continuous
on ‘6,, by Lemma 3.1. But an infimum of con-
tinuous functions is upper semicontinuous.11

Now assume that,on U, ,{Q, V(£)®) is 7-continuous

at g¢,and let ¥4 € Xy, for some Wy, 0 < Y(F) < 1.

Then, if ¥, = Q — /4, 0ne also has ¥, € JQW and
0= lPl(F) 1. Thus

Q,V(g)Q) = W, V()R + @&y, V(2)2) (3.6)
is the sum of two upper semicontinuous functions.
Now, if one has two upper semicontinuous functions
h,(x) and h,(x) on some space and if b5 =k, +h,
is continuous at x = x, one obtains, from the rela-
tion

}Hg‘loh;(x) = hi(xo)y i=1,2,
valid for upper semicontinuous functions,1?! and,
from the continuity of z5(x) at x,

0=1limh 3(%) — lim hg(x)
=% ¥ %, 3
2 hi(xy) +hylxg) — lim kg (x) — hm hz(x)
x—>x
= hmh 1 &) = lim ky (x) =
x> X0
Hence the oscillation of &, (x) at x = x, vanishes,
and thus 7, (x) is contmuous at x,. Therefore,
W o, V( g)sﬁ is continuous at g,.

Since the set of allowed vectors ¥/, is total in &
and since V(g) is unitary, (¢, V(£)Q) is continuous
at g, for all ¥ € X. If ¢ = U(f)R, one has

W, V(g)p) = et UUf)y, V(g)),

which is also continuous at g,. Since @ is cyclic
for U(f), one has continuity for all ¢ € 3. QED

In the preceding Lemma, U, = U, is, of course,
allowed. It may happen that (@, ¥(£)2) has no point
of continuity in the weak topology of U,. The sim-
plest example is furnished by the Fock represen-
tation, for which U, and U, can be identified with
a separable Hllbert space RS and where U} = U*,
The measure p is a Gaussian measure. One has

<Q aVF(g)Q> = e-@'g)/‘l,

which is clearly not weakly continuous on .

However, one knows that an upper semicontinuous
function does have points of continuity in the case
of certain Baire spaces and in particular for all
complete metric spaces. From this the next
theorem follows immediately.

Theovem 3.1 Let U, be a real linear space,
and let U} be a subspace of the algebraic dual
U%. Let '0 be a subspace of V], and let ube a
‘0 »-quasi- 1nvar1ant measure on the Borel sets of
‘Q:{,. Consider a subspace U, C U, and assume that
U, can be made a complete metric topological vec-
tor spacel? by some metric topology 7 for which
(f,) is continuous on U, for each f € V,. Then
the map g > V(g) defined by Eq.(1.3) is strongly
continuous on
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Proof: An upper semicontinuous function of a
complete metric space has a dense set of points
of continuity.13 Hence (@, V(£)®) and ,V(g)¢)
are continuous at some g, € U, ,for ally, ¢ € &,
by Lemma 3.2. But then one has continuity every-
where on U,, since, if g —g,,onehas g— g, +
g0 & in V., and thus
W, V(o) = W, V(g V(g — 80)0) = W, V(g,) ).
Since V(g) is unitary, weak continuity implies
strong continuity. QED

This result allows some immediate applications.
Recall that a Fréchet (F-) space is a complete
metric locally convex vector space and that an
LF-space § is a strict inductive limit of F-spaces,
i.e.,a countable union of subspaces é’ which, by
the topology of &,are F-spaces. A sequence in &
converges if and only if it is contained in some
é’n and converges there. Examples of F-spaces
are Hilbert spaces and the space S of Schwartz

of rapidly decreasing infinitely differentiable
functions. As an LF-space we mention the space
D of Schwartz of infinitely differentiable functions
with compact support.

Corollary 3.1: Let U, be an F-space or an
LF-space for some topology 7 = w(U,,U,). Then
the map g — V(g) is strongly 7-continuous on U, .

Proof: If U, is an F-space, put '6 =0, in
Theorem 3.1. If U, =U,§,,then put '6 é,
Theorem 3.1. Then g H V(g) is c0nt1nuous on
each é’n and thus, by the properties of inductive
limits, also on ‘D,,. QED

We note that for U(f) a similar result holds. If
V, is an F-space or LF-space and U} = U}, then
f k—> U(f) is strongly continuous. This follows
by Lebesgue's bounded convergence,8

A special case of Theorem 3.1 is obtained if U,

is any finite-dimensional subspace of Uy, in par-
ticular if '0 is one dimensional,i.e.,if '() ={ g}
for some g e U, . The Euclidean metric satlsﬁes
all conditions of Theorem 3.1, and one obtains ray
continuity, a result derived by Araki? in a complete-
ly different way.

Covollary 3.2 (Araki): V(A\g) is strongly con-
tinuous in A for fixedg € U _,

A short and direct proof of Corollary 3.2, which
is not based on Theorem 3.1 nor on intricate
Hilbert space techniques, can be given as follows.
If ¢ # 0,there is an f; € U, satisfying (f;,8) = 1.

If one defines Y = {F € 0}; (f,, F) = 0} and if B,

= GB(Y,0,) denotes the Borel sets in ¥, (BO those
of UV} and ®p those of R = {Ag}, then ‘OT is the
d1rect vector sum of R and Y. Moreover it follows
from the definitions in Sec. 2 that (0], 0)

(R,®;) x (Y,®,),as already noted in Ref. 7. Hence
@ is an R-quasi-invariant measure on R X Y. For
any Borel set A in R X Y, with characteristic
function x,(x,y), x4 + A,y) is measurable on

R X R XY, As in Eq. (3.1), one can define a o-
finite R~invariant measure ¢ on R X Y which is
equivalent to p. Now the map
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Vo U= (du/do)i/ey

is an isometry of L2(0V], u) onto L2(R X Y, 0) under
which V(rg) becomes translation of x by A. If
Yix,y) = <p1(x)(p2~(;v) with ¢, (x) continuous, one has
l¥e +a,,y) — ¥k,y)ll, = 0 for A, = 0, by Lebes-
gue's bounded convergence. Since these functions
are total, one obtains strong continuity of the trans-
lations in L2 and thus of V(\g) in L2. QED

A slightly stronger result than Theorem 3.1 and
Corollary 3.1 can be derived under the additional
assumption that §C = L2 is separable. In this case
one can use sequences instead of nets. One knows
that if {#,(x)} is a sequence of continuous functions
converging pointwise to a function 2(x), then the
points of discontinuity of {x) form a meager (first
category) set.14 Hence, if U, is of_second category
in itself for some topology 7 = w(U,, U,), then V(g)
is strongly continuous on U,.

To conclude this section, we note that the above
results can be reformulated as statements on con-
tinuity properties of the Radon—Nikodym derivative
dp#/dp. Strong continuity of V(g) implies that, for
g 80

Iv(g)e — V(g2
-1(8)"- () o o

This means that (dps/d)1/2, regarded as a function
of g with values in Lﬁ,is norm continuous. From
the inequality

(7| —dito | ?

g\ 1/2 1/22
<of|)" - G2) "l o

which is obtained by means of Schwartz's inequa-
lity, it follows that du#/du, regarded as a function
of ¢ with values in L}, is norm continuous. From
this follows, conversely, strong continuity of

V(g) if (f,g) is continuous in g for each f € U,.

4. ERGODIC DECOMPOSITION OF QUASI-IN-
VARIANT MEASURES

Parts of this section have already been obtained
by Hegerfeldt8 through the decomposition of repre-
sentations of the CCR's into irreducible ones. The
preceding section can be used to extend those
results considerably.

A U, ~-quasi-invariant measure p on U} is called
U, -ergodic if there is no nontrivial U, _-quasi-
invariant measure on U} which is absolutely con-
tinuous with respect to p. This means, if v < p
and if v is U, -quasi-invariant, then either v =0
or v is equivalent to p. Geometrically, ergodicity
of v means that U} cannot be decomposed into two
subsets of positive measure which are invariant
under translations by elements of U, , modulo
p-null sets. Thus ergodic measures are in a cer-
tain sense minimal.

Now we consider a real linear topological space
U and take for Ot the topological dual V', If (f,g)

is a nondegenerate continuous bilinear form on

U X U, one ean embed U in V' by regarding each
£ € U as a continuous linear functional on V.
Nuclear spaces play an important role in the fol-
lowing. The only property of nuclearity exploited
here is the Bochner—Minlos theorem, which states
that every continuous positive-definite function on
a nuclear space is the Fourier transform of a
bounded measure on the dual.®

The next theorem solves the problem of ergodic

decomposability of a U-quasi-invariant measure
on the dual U’ of a nuclear F- or LF-space com-
pletely. It extends Theorem 6.5 of Ref. 8.

Theorem 4.1: Let U be a nuclear F- or LF-
space, and let (f,g) be a nondegenerate continuous
bilinear form on U X U so that U can be regarded
as a subspace of V', If u is a U-quasi-invariant
bounded measure on V', then there is a standard
Borel space Z,a bounded positive measure p on
Z,for each { € Z a U-ergodic measure j1, on U’
with ug('O’) = (V') such that, for each Borel set A
in U,

wa) = fdp(©)u, ).

Proof: By the Corollary 3.1, the continuity
conditions of Lemma 6.2 of Ref. 8 are satisfied.
Then the statement follows immediately from

Theorem 6.5 of that reference. QED

This result can be sharpened somewhat by extend-
ing Theorem 6.4 of Ref. 8 with the help of Corol-
lary 3.2. It suffices to demand nuclearity for O,
only.

Covollavy 4.1: Let U be a separable F- or
LF-gspace, let U, be a subspace of V', and let p
be a bounded U, -quasi-invariant measure on U’.

If, for some topology 7 finer than w(U,,V),V, is a
nuclear F- or LF-gpace, then there is a standard
Borel space Z,a bounded positive measure p on
Z,for each { € Z a U, -ergodic measure p, on U’
with/u‘(‘U’) = p(V’) such that, for each Borel set A
in V',

bA) = [do(@)i ().

Proof: Let V(g) be defined as in Eq. (1.3).
Then 2, V(g)) is a positive-definite function
which, by Corollary 3.1,1is continuous for the nu-
clear topology of U,. Hence, by the Bochner-
Minlos theorem, there exists a normed measure
v on Uy, such that

@, V(2)2) = [, dv(Bleita:n), (4.1)
where £ runs through U’. Now one can insert
literally the proof of Theorem 6.4 of Ref. 8. Using
Eq. (4.1) it is then shown in exactly the same way
as in Lemma 4.2 and Eq. (4. 3) of Ref. 8 that the
measures appearing in this proof are U, ~quasi-
invariant. QED

It is clear that Theorem 4.1 and Corollary 4.1
also hold for o-finite measures.
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In this paper it is suggested that there may exist a fundamental relationship between the variables of thermo-
dynamics, the operators associated with certain nonlinear integral equations of statistical mechanics, and the
properties of a class of convex functions, called N functions, investigated by Krasnosel'skii and Rutickii. In
particular, it is pointed out that the most general theoretical framework within which all these problems can
be studied is that provided by the theory of Orlicz spaces. In the first part of our study, presented here, it

is shown that the existence of solutions to certain nonlinear integral equations, derived either from the BBKYG
hierarchy or from the grand partition function using a variational approach, can be established with some
generality. The relationship between our resuits and those obtained by Ruelle is discussed.

1. INTRODUCTION

The class of problems with which we shall be con~
cerned in this paper is best introduced by recalling
the dependence of pressure on density diagramed in
Fig. 1. We shall also refer to the dependence of dens-
ity on fugacity shown in Fig. 2. One of the main pro-
blems in statistical mechanics is the attempt to
determine the equations describing these curves for
specific physical systems. For example, the equa-
tion of state in the grand canonical ensemble is given
by

pV =RT In= (1)
and the evaluation of = for a system gives a traject-
ory similar to that shown in Fig.1.

In our study of this problem, we shall adopt a slightly
different point of view. Rather than considering the
curve itself, we instead focus attention on the area
under the curve and then examine whether this area
can be provided with a well-defined topological basis.
We observe that the function p(p) plotted in Fig.1 is
right continuous for p = 0, positive for p > 0, and non-
decreasing. Furthermore, p(p) satisfies the condi-
tions

p(0) =0

() = lim pp) = .

(2a)
and
(2p)

If one abstracts the specific properties characteriz-
ing the thermodynamic variable p(p), one realizes
that these properties are precisely the ones used by
M. A. Krasnosel'skii and Y. B. Rutickii in defining a
general class of convex functions called N func-
tions.12 These functions, designated M (u), admit the
representation

M@ = [ p(tat, ®)

and, in the most general case, can have a graph of the
form shown in Fig. 3. This figure serves to illustrate
that this class of convex functions is general enough
to include functions whose associated trajectories are
either concave upward or concave downward, or have
discontinuities. Thus, returning to thermodynamics,
we note that an N function can be associated not only
with the pressure as a function of density (as dia-
gramed in Fig. 1), namely,

Mm@ = [ pio)do,

but also with the density as a function of fugacity (as
diagramed in Fig. 2), say

M) = folu| p(z)dz.

From the above discussion, it is clear that the value
of the N function itself is given by the area of the
corresponding. curvilinear trapezoid.

In developing the theory of N functions, it is conven-
ient to introduce another function called a comple-
mentary N function. To do this, a new function g(s)
with s = 0 is defined as follows:

q(s) = sup f. (4)

ks
In more usual language, ¢(s) is the inverse function
of p(t) when p(¢#) is continuous and monotonically in-

\
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FIG.1. Relation between the pressure and the number density
at a given temperature.

Z

FIG. 2. Relation between the number density and the fugacity
at a given temperature,
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creasing. In general, ¢(s) is called the right inverse
of p(t). Notice that the function ¢(s) possesses the
same properties as the function p(¢), since it is posi-
tive for s > 0, nondecreasing, and satisfies the con-
ditions

q0) =0, (5a)
q(o) = lslglo g(s) = . (5b)

The N function complementary to M(u) is then defined
as

N{v) = ];ul g(s)ds. (6)

The relationship between these two functions can be
displayed graphically as shown in Fig.4. The simp-
lest example of a complementary pair of N functions
is the following:

Ml(u)='—%'—(—x, a>1, (7a)
Nl(v)z‘_éi‘?, a*3=L (7b)

For the problems treated in this paper, especially
those studied in Secs.II and III, the following, strongly
nonlinear, N function will be used:

My(u) = ™ — ju|~ 1. {8a)

pl(t) /

t u

plt)s !

t, q(s) u
FIG.4. Relationship between the N function, M (x) and the N function,
N{).

J.Math, Phys., Vol.13,No. 1, January 1972

The N function complementary to M, (u) is
Ny@) =1+ [v]) In(1 + |v]) — lwl. (8b)

The main idea developed by Krasnosel'skii and
Rutickii in the theory of Orlicz spaces is to consider
general properties associated with pairs of N func-
tions and in particular to consider not merely power
functions [for example, Egs. (7}], but exponential
functions as well [for example, Eqgs. (8)]. This pro-
gram is carried out by defining a class of all real-
valued functions defined on a bounded, closed set G,
and denoted by L,,(G), such that

fG Mlu(x))dx < . 9)

Equation (9) defines the “pseudo-norm?® of #. The
class L,(G) and its pseudo-norm are defined analog-
ously. It should be emphasized that the spaces L (G)
and L, (G) are not, in general, linear spaces and the
“pseudo-norms” have few of the properties of norms.
Accordingly, one defines LL(G) to be the set of all
function u(x) satisfying

Ifau(x)v(X)dxi <o (10)

for all v(x)€ Ly(G). The set Ly(G) is defined analog-
ously. The major step taken by Krasnosel'skii and
Rutickii is their demonstration that these sets are,

in fact, linear spaces and can be provided with norms
in such a way that L},(G) and L}, (G) become a conjug-
ate pair of reflexive Banach spaces. Then, L*M(G) is
called an Orlicz space and the norm is defined by the
relation

Iy = Sup] J, ut)o(xiax], (11)

where the supremum is taken over all v € L with
pseudo-norm less than or equal to unity.

Having sketched the general ideas underlying N func-
tions and Orlicz spaces, it is apparent from a study
of Figs. 1 and 2 in relation to Fig. 4, that several
lines of research could be pursued at this point. For
example, one could make extensive use of the alge-
braic properties of N functions, as typified by the
Young inequality

uv < M(u) + N@) 12)

which, written in terms of thermodynamic variables
becomes

pp < M(p) + N(p). (13)

On the other hand, given the norm defined by Eq. (11),
it might be recalled that Krasnosel'skii and Rutickii
have proved several theorems on the existence of
solutions to certain nonlinear integral equations with
exponential nonlinearities. Since this latter approach
provides the closest connection with work already in
the literature, we consider here the application of
these existence theorems to certain approximate inte-
gral equations derivable from Eq. (1), and defer the
algebraic analysis to a separate paper.

To see the close connection between N functions, non-
linear integral equations with exponential nonlineari-
ties, and thermodynamics, we recall the expression
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for = given by Morita and Hiroike3:

InE = [dRp(R) Inz*(R) — [dRp(R)(Inp(R) — 1]
+ 4 f faR,dRp(R O (Ry) [1 + v(Ry,Ry)]
x In[1 + bRy, Ry)] — 3[[dR1dR,0(R;)p(R,)
x {{1 +v(®;,Ry)] In[1 + v(Ry,Ry)] — v(Ry, Rp)}

4+ (14)

where
z*(R) = 2 exp WRVAI,
b(Ri,Ry) = exp'“(Rl-Rg)/kT_ 1,
v(Rl,Rz) zg(Rl’Rz) —1.

Here, ¥(R) is the external field (set to zero in what
follows},u(R,R,) is the pair potential between parti-
cles 1 and 2, p(R) is the singlet distribution function,
and g(Rl, R,) is the pair-correlation function. Pro-
vided all terms on the right-hand side of Eq. (14) are
taken into account, this equation is an exact repre-
sentation of Z. If one uses the variational condition

6111',:.'{) *
——=jz¥b,v=0
<6p(R)

in conjunction with Eq. (14), one obtains the following
expression:

Inz*(R,) = Inp(Ry) — [dRyp@R,){[1 + v(R1,Ry)]
x In[1 + b(Ry,Ry)] — [1 + v(Ry, Ry)]
x In[1 + 2(Ry,Ry)] + v(Ry, Ry)}

U (15)
As it stands, Eq. (15) represents an exact integral
equation for p(R) if v(R,,R,) is known..In practice,
one neglects all terms beyond the second on the right-
hand side of Eg. (15), thus forming the hypernetted
chain approximation. Using this approximation, the
integral equation (15) can be written in the form

#(Ry) + [ k(R), Ry) exp[@(R)WR, =0,  (16)
where
o(R) =1n B, amn
K(Ry,Ry) = Kyyc(Ry; Ry) = Bzu(R;5)g @) (R, Ry)
+2{[1 + (R, Ry)] In[1 + o(R;,R,)]
— v(Ry,Ry)} . (18)

Various other integral equations for the singlet dis-
tribution function can be derived, which can be cast
into the Hammerstein form4 of Eq. (186), but with dif-
ferent kernels. Several of these kernels have been
discussed in Ref. 5, together with the approximations
involved in their formulation. For example, starting
with the first equation of the Kirkwood coupling-
parameter hierarchy, one can derive an integral equa-
tion having the same overall structure as Eq. (16),

but with the kernel

KKJ(R]_’ Rz) = Bzu(Rlz) ‘ftl)l dgg(z)(Rl’ Rz’ g), (19)

where § is the Kirkwood coupling parameter. Alterna-
tively, Green6 has shown that an equation similar to

Eq. (16) can be derived starting from the YBG equa-
tion; here, the kernel is
00

KRy, Ry) = pe')  dru'(rig @), (20)
Finally, one can start from an approximate mean-
field representation of the singlet distribution func-
tion suggested by Brout7 and derive an equation
similar to Eq. (16), but with the kernel

2
K R,,Ry) = Bau Yr 12)gé )(31 2

In this expression,géz)(Rlz) is the pair-correlation
function of a reference system and u (R ,,) repre-
sents a perturbation potential.

(21)

The feature which is common to all of these approxi-
mations is that the structure of the nonlinear func-
tion appearing in the associated integral equation
remains unchanged. That is, although the kernel
changes from one representation to another, the non-
linearity remains exponential in each case. This
suggests that if general results on the behavior of
thermodynamic systems are to be inferred from a
study of well-defined approximations, one should
focus one's attention on existence theorems for non-
linear integral equations with exponential nonlineari-
ties, since apparently it is this feature which is pre-
served in all of the above approximation schemes.
The natural framework for discussing such equations
is that of Orlicz spaces, developed by Krasnosel'skii
and Rutickii and introduced above. The main point

is that very different requirements must be satisfied
in order to prove existence of solutions for integral
equations with exponeéntial, as opposed to power, non-
linearities. It is this feature which distinguishes the
present work from that presented in Ref. 5, since in
that paper the development was formulated explicitly
within the framework of L# space. This is not to say
that exponential nonlinearities were not considered
in Ref. 5; however, to insure that the associated non-~
linear integral equation was defined within L # space,
it was necessary to bound the nonlinear function,
thus limiting the generality of the results. A further
distinction between the material presented in Ref. 5
and that given here is that Ref. 5 was concerned with
the problem of bifurcation, whereas our primary in-
terest here is the application of theorems on exist-
ence.

We present in Sec. I a detailed analysis of the con-
ditions which must be satisfied by the various kernels
introduced above in order that complete continuity of
the associated operator be guaranteed. Since the
details of the theorems proved by Krasnosel'skii and
Rutickii, which we use extensively, have been present-
ed in English translation only in a monograph and one
review article (although their principal results have
been summarized in various other sources8), we have
taken the caution to state their theorems fully. For
convenience, the theorems cited are labeled as in

Ref. 2. In Sec. I we focus on the complete continuity
of the nonlinear operator associated with the non-
linear integral equation under study. Then, in Sec.1V
we present the central result of this investigation in
the form of an existence theorem of Eq. (16). Various
aspects of this result are discussed in Sec. V, and
several comments are made regarding the relation-
ship between our results and those obtained by
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Ruelle.® Finally, a summary of the Ay, AL, A, and A2
conditions, useful in discussing the “growth” of non-
linear functions, is presented in the Appendix.

II. THE COMPLETE CONTINUITY OF THE KERNEL

We begin our discussion by examining those condi-
tions which must be satisfied in order that the kernel
be completely continuous. Let us associate with the
kernel the following operator:

8#(R,) = [ KRy, Ry) & (Ry)dR,.

The theorem which will serve as the basis of our dis-
cussion can now be stated.

Theorem 4.1: Let M(u) be an N function, and let
its complementary N function, N(v), satisfy the A’
condition. If K(R,, R)) € E,, that is, if

I MoK Ry, Ry)]dRydR, < 22)
for all o, then the operator & acts from Ly, to Ly, and
is completely continuous.

In the inequality (22), V refers to the (finite) volume
in which the system is contained; more precisely, it is
a bounded, closed set in a finite-dimensional space.
As noted in the preceding section, the A’ conditions,
as well as the other A conditions used below, are
defined in the Appendix.

As one example of an N function whose complementary
N function satisfies the A’condition, we cite M, (x) and
N,(v), Eqs. (8a) and (8b), respectively. Also, we note
that even though the complementary N function cor-
responding to the N function [M;(w) = e — 1] cannot
be written down explicitly, it can be demonstrated

that N;(v) satisfies the A’ condition by using the pro-
perties of M;(u). For these two cases, if |K(R,, R,)|
is finite on V X V, then condition (22) is satisfied.

Let us now consider the kernels introduced in Sec.I.
For convenience, we shall discuss the Kirkwood~
Jancovici kernel first. Equation (19) can be written
in the form

KiolRy, Ry) = B2 [, a8 ulR 1) @Rz, 0).

We will assume that #(R,,) »© as Ry, = 0. From
the theory of distribution functions,19 it is known that

EOR,,, &) ~ exp[— tu(Ry,)/kT],

and so in the limit R, — 0 it is reasonable to con-
clude that the product

u(Rlz)g(z)(Rlzv £)

is dominated by the exponential term. That is, we
conclude

I};‘_"‘O u(Rlz)g‘z’(Rlzi) =0.

We next assume that #(R;,) > 0 as R, — . In the
Kirkwood-Jancovici approximation, the liquid pair-
correlation function is chosen to fix the kernel, and
for this choice g @R ,,) approaches unity in the limit
R, — . Obviously, for this case

(23)

R}zi—vmoo u(R12)gz(2)(R12, g) = 0..
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If instead a pair-correlation function characteristic

of a periodic phase is chosen to fix the kernel, then
&R 1,5, t) will oscillate with increasing R,,. As long
as the amplitude of g @R, ,, &) is bounded, however,
condition (22) will be satisfied. In the case of inter-
mediate R, ,, that is,0 < R,, < %, it is necessary to
impose the Ruelle-Fisher bound!?! to insure compli-
ance with (22). Briefly, we require that

U(Rl, .o "Rﬂ) = Z} u(R;]) 2z — nB) (24)
1<i<j<n
for some B>0andn=1,2,3,---, This bound is

necessary if we wish to discuss real, physical systems
since otherwise an infinitely deep potential well might
exist, and the whole system would collapse. Con-
dition (24) is a lower bound on u(R,,), and since for
finite u(R;,),8 @R ;,, £) is finite, we conclude that

the product

u(Rlz)g(z)(Rlza £)

is bounded for intermediate R,,. Given these
remarks, we conclude that the kernel K ; is finite on
V X V. Since the inequality (22) is then satisfied, we
can state that the Kirkwood-Jancovici kernel is com-
pletely continuous on some Orlicz space.

In studying the Green kernel (20), we consider explicit-
ly a potential that can be represented in the form

) )

where m > n = 1 and a > 0, b > 0. By constructing the
derivative corresponding to (25), it is seen that in the
limitR,, - 0,u'(R,,) - — «. However, by the same
argument as above, g @(R ,,) should dominate 'R ,)
in this limit, and so we conclude that

(25)

Rlirgo u'(R1)§@PR,,) = 0.
12

Turning next to intermediate values of R, ,, we note
that the potential (25) attains its minimum value when

m-n am
Ri2= Vo
and

minfu (R, ,)} = “(&%) 5 _ b(al%\) ad

The derivative u'(R,,) constructed from (30) has as
its maximum value,

maxju’' R, ,)} = — am(l’l?i%) e

am(m +

Py
+ bn(%)m @

(26)

Hence, by considering a potential for which the
Ruelle~Fisher bound is satisfied, we have the product
u' (R,)€ @R, ;) bounded for intermediate values of
R,,. Finally,we consider the case R, — «. If in the
relation (20} we choose a liquid pair-correlation
function, g ? (R ,) then in the limit R, > ,

§PR,,) — 1,and so wWREPR,5) 2 u'(R),). But

'(R ) ( 1 m+1 + b ( 1 >n+1
u =—am{5— nf=—
12 R12) Ko
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goes to zeroat least as fast asRlz , 80 f u'(Ry,)dR |,
converges. The above argument still “holds if we
choose a periodic pair-correlation function, provided
the amplitude of g @R ,) is bounded. Thus, in any
case, we conclude that

7 drw (g @)
Ryp

is finite on V X V and the condition (22) is satisfied.

The conditions which must be satisfied in order that
the Brout kernel be finite on V X V¥ can be establish-
ed easily, given the arguments presented in the pre-
ceding paragraphs. Furthermore, the first term in
(17), Bzu(R ;)8 @ (R ,), is similar in structure to the
Kirkwood-Jancovici kernel which is finite on V x V.
The second term in (17) may be written as

z[g(ng) Ing(R,,) — 8@, ) + 1].

Provided we impose the Ruelle-Fisher bound, this
term is also finite on V x V for all values of R, ,,
so that p @R | ,) < »,

M. COMPLETE CONTINUITY OF THE NONLINEAR
OPERATOR
We shall associate with the nonlinear function appear-
ing in Eq. (16) an operator f defined by
feR) = exp[eR)].

We note further that the integral appearing in this
equation can also be associated with an operator

ADR,) = jV KR, R,) exp[®(R,)]dR, (28)
so that,
A= f. (29)

We will assume that the nonlinear function appearing
in Eq. (16) can be characterized by the following in-
equality:

I7[R, #(R)]] < b(R) + G(]2]),

REV, —0<&<w (30

where we specify that G(®) is continuous and mono-
tonically increasing for & = 0 and b(R) = 0 is a mea-
surable function. In order to insure the complete
continuity of the operator ¥, it will be necessary to
require that f is continuous and bounded and
f:Ly > Ly and the operator & is completely contin-
uous and # : L - LM Theni for the full nonlinear
operator, we have that A : L, — LM and has a bounded
norm; that is, if 6 is the null vector, then

|28l <c, B € T,(0), (31)
where T(9) refers to a sphere around ¢ with radius
p of the space LY, and ¢ is a constant which depends
only on the functlons b(R) and G(®), and the number a,

/MR, R,)|dRdR, =a < .

As is indicated in Ref. 2, these conditions will all be
satisfied if

NuG (v®)] < M(®)

(32)

(33)

for large & where , v > 0. In the case that f is
strongly nonlinear, G should increase faster than a
power function. Thus, by the inequality (33), the N
function M(«) should grow faster than a power func-
tion. Such N functions, generally speaking, satisfy the
A, or A2 condition (see Appendix).

We now state explicitly, in the form of two theorems,
the (sufficient) conditions for which the nonlinear
operator 9 can be shown to be completely continuous.

Theorem 4. 4: Let the following conditions be
satisfied:

(a) For all a, let
J, | M{eK®,, Ry)]dRdR,, < ,

where M(x) is some N function which satisfies the A,
condition and where the complementary N(v) satisfies
the A’ condition.

(b} Let the function f(R, ) satisfy the inequality
If R, &) < bR) + G(|®]),

where
[ 16®) |\ MEO((bR)|)dR < @

ReV, —o< &< w,

and G(®) is continuous and monotonically iricreasing
for & = 0.

(c) Let a constant y exist such that for large ¢

Gyd) < M(®).

Then, the operator A = sfis completely continuous
in some sphere of the space LM

Theorem 4.5: Let the following conditions be
satisfied:

{a) For all a,let
[ J M[aK®,R3)]dR,4R, < o,

where the N function M (x) satisfies the A2 condition.
(b) Let Condition (b) of Theorem 4. 4 hold.

(c) Let an N function Q(u) exist such that for large u

GlR@)] <

Then, the operator 9 is completely continuous in the
whole space LM

M(®).

The difference between the conclusions of the two
theorems is that Theorem 4. 4 establishes the com-
plete continuity of % in some sphere, say T (B)M, of
the space L}, while Theorem 4.5 glves complete
continuity of % in the whole space L, - Although both
theorems can be applied to establish the existence
of at least one solution to the integral equation under
study, it is sometimes more convenient to have com-
plete continuity in the whole space L.

Let us now consider these theorems, one at a time,
starting with Theorem 4. 4. To apply this theorem,
let M(u) = e — |u] — 1.

It is easy to show that M(u) satisfies the Ag con-
dition, and that the complementary N function N(v)
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satisfies the A’ condition. From the arguments pre-
sented in Sec.Il, Condition (a) is satisfied for all the
kernels. Now, let b(R) = 0 and G(®) = exp[®], then
clearly

If(R, ®R))| < bR) + G(|&])

and

S 1p@Mev (bR <,

since MCD(0) = 0. Thus, Condition (b) of Theorem
4.4 is also satisfied. Now let y = 3; then,

G(®) = exp[%] < exp[|®|]— |®] —1 for large &.

Therefore, Condition (c¢) is also satisfied, and hence
the conclusion that % is completely contmuous in
some sphere of the space LM, for M) = e — u|—1.

Turning to Theorem 4. 5, let
M) =e¥ —1.

Then M(u) satisfies the A2 condition, and from Sec. IJ,
we conclude that Condition (a) is satisfied. If we
identify 6(R),G(®) as before,then Condition (b) of this
theorem is also satisfied. Flnally, let Q) = 3|ul2.
Then,

G[Q(®)] = exp [l—%—lf] <e¥ —1 for large 9,

and Condition (c) of Theorem 4.5 is satisfied. There-
fore, we conclude that %A is completely continuous in
the whole space L} M Where

M) = e** — 1.

1IV. EXISTENCE OF SOLUTIONS OF THE NON-
LINEAR INTEGRAL EQUATION

We begin this section by recalling that the complete
continuity of the operator % can be used to establish
the existence of solutions of the integral equation
under study. From the preceding sections we have
the result that the operator % is completely cont:mu-
ous in some sphere, say TP(G)M, of the space L M
order to cast our integral equation into standard
form, let us identify

=A%, (34)
and

8=8'f, (35)
where 8z = — x. With these definitions, the integral

equation (16) can be written as
ABD = &, (36)

The complete continuity of % implies the complete
continuity of 8. Therefore,

sup [[u®l, =4, (37
e€T, @)
where d is some constant. Now, let 0 <a < Z’ then,
sup I)NHM
QETP

= sup [AB&f, < \xl

sup llsell < p. (38)
@CT(B) p(e)
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Thus, for |A| small enough, the operator % is com-
pletely continuous, and % : T,(6)y — T,(0),. We recall
from Schauder's fixed pomt theorem that if the
operator % is completely continuous and maps the
sphere T,(6),, into itself, then there exists at least
one solutlon of the associated equation, Eq. (36), in
T,(6)y- This, in turn, implies that there exists at least
one solution of the nonlinear integral equation for the
singlet distribution function, Eq. (16).

It should be noted that the use of different g in the
above condition on existence allows different upper
bounds on the parameter |A|. If we apply Theorem
4. 4, the variation of p is bounded by the theorem it-
self. On the other hand, by applying Theorem 4.5, p
can take on any finite value such that % is completely
confinuous in Tp(B)M. Therefore, in searching for an
upper bound in A that still guarantees the existence
of a solution, we may be able to formulate a more
favorable upper bound using Theorem 4. 5, since there
exists a larger range of » for which the existence of
at least one solution is insured.

The physical interpretation of this result may now be
stated. Since, 3 = 1/kT and z~density, the condition
that Bz be small enough means that the system is at
high temperature and/or low densities. Under these
conditions, the integral equation for the singlet dis-
tribution function has at least one solution. This re-
sult may be compared with the one obtained by
Ruelle? in his analysis of the Kirkwood-Salsburg
integral equations. Further comment on this point
will be deferred until the following section.

V. DISCUSSION

In this paper we have discussed the conditions which
must be satisfied in order to insure the existence of
at least one solution to a particular integral equation,
Eq. (16). Our interest in this equation was stimulated
by the observation that regardless of whether one
started from the BBKYG hierarchy or from the grand
partition function and used a variational approach, the
integral equation obtained for the singlet distribution
function could always be cast into the Hammerstein
form with an exponential nonlinearity. The kernel in
the Hammerstein representation was found to depend
onthe particular approximation scheme usedto effect
closure. Hence, the point of view was taken that if one
hoped to infer general results on thermodynamic
systems from a study of approximate equations for
the singlet distribution function, it was inadmissible
to weaken the exponential nonlinearity. The various
kernels which arise have a certain overall similarity
in structure in that an intermolecular potential
energy function is always multiplied by a pair-cor-
relation function, and it is this feature which allows
one to prove the condition on complete continuity of
the associated operator & , provided one assumes the
Ruelle-Fisher bound. The overall framework within
which this problem was studied was that provided by
Krasnosel'skii and Rutickii, namely the theory of
Orlicz spaces, and in this paper we have focused on
that part of the theory which deals with strongly non-
linear functions.

It is to be noticed that in choosing the M (®) used in
Theorems 4. 4 and 4. 5, there is a tradeoff between
the “good” properties of & and those of f . That is, in
establishing the complete continuity of &, we want
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M (®) to be small for large &, whereas in establishing
the continuity and boundedness of f , we want M(®) to
be large for large ®. In our problem, the strong non-
linearity of f requires that M(®) grow faster thana
power function, and, as a consequence, we cannot
relax the strong restrictions on the singularities of
the kernel. Of course, if one is willing to consider the
case that M () grows slower than a power function,
then far more general results than those obtained in
Sec. IV can be proved. For example, one can prove
that the existence of a solution of A%® = & is
guaranteed for all . However, the weakening of the
nonlinearity leads to equations which, though more
tractable, may have nothing to do with statistical
mechanics.

There is, of course, one approach that can be pursued
in order to obtain more general conditions on exist-
ence, and possibly on uniqueness as well. That app-
roach is to restrict even further the singularities of
the kernel. For example, if we restrict the kernel

to be symmetric and positive definite, then the follow-
ing theorem?2 can be proved:

Theorem: Let the symmetric, positive definite
kernel satisfy the condition

[ [ explK®1,R5)|1<dR 4R, < o,
Let
!f(R9 d’)[ <b+ ea(b,

€> 0.

a>0,ReV,-0o<d< X,

If », is the largest eigenvalue of the self-adjoint
operator

AB(R,) = [ KRy, R,)R,, 3R,)]dR,

and
%fouf(n,é)dés 3a82 +b, ReV,~0<&<w,
where a < 1/x, and b > 0, then the equation

L [K®,RIR , 6R,)1AR, = O(R,)

has at least one solution $,(R) which satisfies the
condition

fv exp [$,(R) [dR < .

In terms of Eq. (16), this result states that if one of
the kernels, Egs. (17), (19), (20), or (21) can be proved
to be symmetric and positive definite, and in addition,
satisfies the conditions on complete continuity stated
in Sec. I, then there exists at least one solution $R)
such that

1
= J pR)R < .

Since, for realistic potentials, the kernel will have
both positive and negative parts depending on the
range of R,, under study, it is clear that this theorem
is probably too restrictive. In fact, using the Brout
kernel and choosing u(X(R,,) to be a “soft” repulsive
potential and g@(R, ,) to be the pair-correlation
function for a system of hard spheres, this result
amounts to saying that there exists at least one solu-
tion to the nonlinear integral equation for the singlet
distribution function for a system interacting with
purely repulsive forces.

In assessing the theoretical results presented in this
paper, it is well to keep in mind that the paucity of
more general theorems on the existence and unique-
ness of solutions of the nonlinear integral equation
(16) for systems interacting with realistic potentials
is a reflection of the fundamental work that has yet to
be done in developing the basic theory of QOrlicz
spaces. For example, the integral equation for the
singlet distribution function could be studied only if

V represented a bounded, closed set in a finite~dimen-
sional space, that is, for a system of molecules en-
closed in a finite volume. To the best of our know-
ledge, nothing whatever is known, either in the theory
of Orlicz spaces or in the simpler theory of L #
spaces, on the existence properties of nonlinear equa-
tions for measure p(V) = ®,

Finally, we comment on the relationship between the
work presented here and the results obtained by
Ruelle? in his study of the Kirkwood-Salsburg inte-
gral equations. In the paper of Ruelle, the integral
equations studied are essentially linear, whereas those
investigated here are nonlinear. In both cases, it has
been found possible to introduce a well-defined norm
on a Banach space (here, an Orlicz space). Because
his study deals with linear integral equations, Ruelle
can prove uniqueness as well as existence, whereas
here only existence of solutions can be established.
Furthermore, because of the way the problem is for-
mulated, it is not necessary for Ruelle to introduce a
closure, that is, an approximation for decoupling the
hierarchy, whereas for the various representations
studied in this paper, this was necessary. It is in this
sense that the integral equations studied in this paper
are approximate, while those studied in Ruelle's
paper are not,

In view of the above remarks, it might well be asked
why it was necessary to go to a more difficult theory,
i.e., nonlinear integral equations defined on QOrlicz
space, when an essentially simpler theory, linear
integral equations defined on a Banach space, yields
exact results on existence and uniqueness. This
question might be answered in several ways. First

of all, as Ruelle implies, it is difficult to see how his
bound on fugacity which gives existence and unique-
ness can be generalized to higher densities and lower
temperatures, whereas using the theory of Orlicz
spaces at least there exists a mechanism for general-
izing the bound obtained on Eq. (16); one searches for
a function M (u) for which a “tradeoff” between “good”
and “bad” properties of kernel and nonlinear function
can be effected. Secondly, several workers have taken
the point of view that a phase transition can in some
sense be analyzed by considering changes in the solu-
tions of certain nonlinear integral equations derived
from the BBKYG hierarchy.12.13.5 In particular, one
considers the possibility of bifurcation of solutions

of Eq. (16) corresponding to certain eigenvalues of
the kernel. The phenomenon of bifurcation for com-
pletely continuous kernels is a property that is rest-
ricted to nonlinear equations, and hence it would
appear that the linearized system of equations studied
by Ruelle might not be the best framework for in-
vestigating the general theory of phase transitions.
Finally, in view of our observation that the dependence
of pressure on density for physical systems, Fig. 1,
essentially defines an N function, it is possible that
relationships between thermodynamics and the under-
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lying statistical-mechanical theory might be clearly
displayed if one insisted on working in a Banach
space appropriate to both classes of problems, that
is, Orlicz space. It is this program of research
which will be pursued in a forthcoming publication,
wherein the algebraic aspects of thermodynamic
theory will be developed using the theory of N func-
tions.

APPENDIX

Let M, («) and M, (x) be N functions. We write
M, (u) < M,(u) if there exist positive constants «, and
k such that

My(u) < My(ku), u =z ug.

Two N functions M, («) and M, (u) are said to be equi-
valent,

Ml(“) ~ Mz(u):
if My (u) <My(u) and M, () < M, ().

An N function M () is said to satisfy the A, condition
if there exists constants £ > 0, u, > 0, such that

M(2u) < BM (), u = ug,.

An N function M(«) is said to satisfy the A’ condition
it there exist positve constants ¢ and #g, Such that
Muv) < ceM@M (v), u,v = u.

An N function M(x) is said to satisfy the A5 condition
if

M) ~ |u|M@w).

Finally, an N function M (x) satisfies the A2 condition
if

M) ~ M2(u).
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In this paper we investigate the stochastic ordinary differential equation »” + %3[1 + ey(i)Ju = 0 with y{) a ran-
dom process. Two specific types of process y(t) are considered. Both of these arise from a bounded mapping
y{t) = flx(t)) of a countable state space Markov process x(f). Exact equations are derived for the statistical
moments of u(t),and the behavior of the first two moments is discussed in the limit of small ¢. A description

of the layered media to which our results apply is given and a comparison of our exact results with certain

perturbation methods is made.
I. INTRODUCTION

In this paper,we will determine the statistical mo-
ments of the solution matrix U{t) = [uij(t)], i,j=1,2,
of the initial value problem

LU _at,oU, te0,0), €>0, UO)=Ip (1)
where [, = [6,;], At, €) = {6,16,, — k31 + ey (®)]
5,20;1}, 0;; is the Kronecker delta,and y(¢) is a sto-
chastic process. The particular type of stochastic
process which we will consider has the form y{f) =
S{x(t)), where x(¢) is a countable state space Markov
process and f is a real valued function which is perio-
dic in the following sense. If {ay,a,,4a5,...} is the
set of possible values for x(¢),then there exists an
integer M > 0 such that f(a,,,) = f(a,) for all £ =0,
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1,2,.... In this case,the range of y is a finite set of
real numbers {b,b,,b,,...,by 1}, Where the b, =
fla,) are not necessarily distinct.

For x(¢) a finite state space Markov process, Eq. (1)
has been studied by McKenna and Morrison.1:2 In
Sec. Il we use their results to derive partial differen-
tial equations for functions G,(U,t),k =0,1,...,M—
1,where G,(U,t)duy; -+ + dugy = Probly; <u,;(t) <

u;; +du;;,t,j =1,2,y(¢) = b,t. For a general count-
able state space Markov process these equations con-
tain additional unknown functions,but we have found
two types of process (which we call types I and II) for
which the G, can be determined.

The principal results of the paper are obtained in
Sec.III. In this section we derive the equations satis-
fied by the statistical moments of U(t) when x(¢) is a
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lying statistical-mechanical theory might be clearly
displayed if one insisted on working in a Banach
space appropriate to both classes of problems, that
is, Orlicz space. It is this program of research
which will be pursued in a forthcoming publication,
wherein the algebraic aspects of thermodynamic
theory will be developed using the theory of N func-
tions.
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fla,) are not necessarily distinct.

For x(¢) a finite state space Markov process, Eq. (1)
has been studied by McKenna and Morrison.1:2 In
Sec. Il we use their results to derive partial differen-
tial equations for functions G,(U,t),k =0,1,...,M—
1,where G,(U,t)duy; -+ + dugy = Probly; <u,;(t) <

u;; +du;;,t,j =1,2,y(¢) = b,t. For a general count-
able state space Markov process these equations con-
tain additional unknown functions,but we have found
two types of process (which we call types I and II) for
which the G, can be determined.

The principal results of the paper are obtained in
Sec.III. In this section we derive the equations satis-
fied by the statistical moments of U(t) when x(¢) is a
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type I or II process, and we study in detail specific
examples of each type of process. For each of the
processes studied, we determine explicitly the behav-
jor of the first two moments of U(¢) in the limit of
small ¢,and we compare these results with those ob-
tained by various perturbation techniques.

Equation (1) is, of course, equivalent to the second
order ordinary differential equation u” + k%[l + ey(t)]
u = 0 with the initial conditions #(0) =1, « (0) = 0 or
u(0) = 0, «'(0) = 1. Assuming ¢t has dimensions of
length and letting k% = w2/c2,where ¢ is the velocity
of light,we can interpret u as the spacial part of the
time harmonic (circular frequency w) electric field
in a one-dimensional random medium with refractive
index n2(t) = 1 + €y(t). Since y(¢) can take only a fi-
nite set of values,the medium is composed of layers
of random thickness. The particular example of the
type I process which we treat in detail in Sec.III cor-
responds to a medium in which the refractive index of
the layers alternately increases and decreases by in-
crements ¢ between the extreme values 1 — %eK, 1+
3 €K ,where K is a positive integer and M = 2K. The
graph of n2(t), therefore, looks something like a jagged
random sine wave. The type Il process which we study
corresponds to a medium whose refractive index is
bounded by the values 1 + €K’ (where K’ is a positive
integer and M = 4K'),alternately increases and de-
creases by increments ¢ between extreme values that
on the average decrease with increasing {. The graph
of n2(¢) in this case resembles a jagged, randomly
damped, random sine wave.

O. GOVERNING EQUATIONS

We first consider the definition of the stochastic pro-
cess y(t) appearing in Eq. (1). Let x(f) be a countable
state space Markov process defined fort € T =

[to>®), ty < 0,and assuming values in an arbitrary
setS—{a]]cJ} where J is Z* ={0,1,2,...} or
z=A{.. 1,0,1,2,...}. All distribution func-

tions of x(t) are completely determined by the initial
distribution?

PP =Plxltg) =}, jed @
and the conditional probabilities that x(¢,) = a, given
that x(t,) = a;, ty s t; < t,,which we denote by
bi,(ty,ty) = Plxlty) = ajlx(ty) = a}, d,5ed.  (3)
It is convenient for our purposes to assume that the
probabilities p, . defining the process x(¢f) arise in the
following way. (vVe suppose that there exist quantities
A ](t) satisfying

ALyz0, i=j, aylt)so, 4)

kz?d)ui,,(t) =0 foreveryteT, (5)
and for At — 0 we define

Pyt + AL) =1 +A,,(8)at + 0(al), (6)

b, (st + AL) =2 (B)at + O(at). (M)

Then,assuming that the A.(¢) are bounded, it is shown
in Feller4 that Eqgs. (6) anci (7) together w1th the
Chapman-Kolmogorov identity uniquely determine

the probabilities p;(¢;,¢,). In addition to Egs. (4) and
(5) and the boundedness assumption, we shall require
that the A ;;(t) satisfy

)\,']‘(t) =7\(i—j:t) (8)

and that there exist nonnegative integers L and N
such that
A (E) =0

only for— L <{—j < N, (9)

G1ven a Markov process x(t) whose state space is

, j € d} ,we define the stochastic process y(t)
as folfows Let f be a real valued function defined on
S and assume that there exists a positive integer M
such that f(a,.,) = f(a,), k€ J. Now,let y(t) = fx{¢)),
t € T. Then the range of y{t), R = y(T) =f(S) =
{bgsbys-.esbyo13b, =fla,)} is a finite set and all dis-
tribution functions of y are uniquely determined. In-
deed,let J; denote either Zt = g € Z+;f(a,) = b} or
Z,={k € 23Ma) = bY30,0) = Ducs b9, (Epst) =
{x(t =a}. Then it is easy to see that ’

P{y(t) = bz} :kéA P{x(t) = ak} =k§4pk(t)’ (10)

P{Y(tl) = bil,y(tz) = biz’ Sy(E,) = bin}

=2 o L b 0bs g, Erata) Py g (ne1ata),
I i
by Sty s o5, n=2,3,.... (11)

The process y(t) is,therefore,completely defined by
Egs. (10) and (11) for any given A, (t) satisfying Eqgs.
(1), (5),(8),and (9). We now turn fo the derivation of
the equations for the moments of U{t).

Let E(U,t) be the event (w-set) E,(U,¢) = {u,g <

Uy (6) < 1y +dugy, 0,6 =1,2, x(t) = a,} and define
F,(U,t)duy yduy jdu pdugy = P(E,(U,L), jed. (12)
Using the phase space method of McKenna and Morri-
sont»2 or the methods described in FrischS it is pos-

sible to show rigorously that the F; are the weak solu-
tions of the partial differential equatlons

BF 2
+ E a('”u

=+ e kZ)/\kJ(t)Fk_O

jEed,
(13)
€]

where a¥} =6 ,0,, — k3[1 + €f(a,) 16,205 1,2nd that the
F satisfy the initial condltlons

F(U,0) = 5,000y, — 1)6(up1)0(u15)60upp ~ 1).  (14)

For completeness, we shall give a brief hueristic de-
rivation of Eq. (13). Let Af be positive and consider
the event E,(U,t + at). This event can occur in the
following mutually exclusive ways. First,with probabi-
lity 1 +a (0ot + o(al),x(t + At) = q and x does not
change bet’ eent and [ + At. In this i:ase,

BN, au »

Uy = et + AL) =u 4 () + E aPu

avtt vB

{t)at + o(al),
(15)

and we note that the Jacobian {du{,/du (=1 + o(At).
Second, with probability A ;(t)at + o(at),we have x(¢) =
a,, k=j, x(t + Al) = a;, andx changes value just once
in {t,t + at]. In this case,

Upg =uyglt + o) =uyy(t) + ofAl) (16)
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and the Jacobian is 1 + o(At), Third, with probability
o(At),x changes value two or more times in [¢,¢ + At].
Expressing E;(U,t + At) as the union of these events
and taking probabilities, we find that

FU, L+ At)duy -+ dugy
= (Fj(U — AUTAL L)1 + A (t)at]
+ALD A, (OFO,1) + o(at) )duy,. . .duyg
RE

ktj

where A'” =[a'}). We obtain the first term on the
right-hand side of Eq. (17) by using the facts (i) that
the inverse of the transformation u g = ¥/,4,,),
where ¥, is given by Eq. (15),is obtained by revers-
ing the sign of At in this equation, (ii) that u ,(t + At)
belongs to an interval I ; = (u 4,u,5 + du,,) if and
only if u g () belongs to Y 1 ae% = J g and (iii) that
Plugt) € Jg, x(t) = a;, x(t + At) = a,, x(¢) does not
change in (¢, + At} = Plu,g(t) € J,0,X () = a}

P{x(t + At) = a ,and x does not change in (¢, + At)]
x(t) = aj} = F,(U — AOUAL (1 + 4, ()at +0(at)]
du,,---dugy. The second term is obtained by simi-
lar reasoning. If we expand F,(U — ADUAL,t) in a
Taylors series,divide Eq. (17) by du,4 - * - dugy,and
allow Af to approach zero, we obtain Eq. (13). The
initial conditions (14) are an obvious consequence of
the definition of F (U, {) and the fact that U(0) = /,.

Since there are an infinite number of F;, Eq. (13) is
of little practical value. Let us.consider,therefore,
the event

amn

EBU,t) = ngkEj(U,t) = f{top s us ) <uyg + duy,, o,
B=1,2,5() =b,}
and define
Gk(U,l)dull e duzz = P(E<k)(U,t))
=( by F](U,t)>du11 “erdugy. (18)
]GJk
We note that for all j € J,, afjé’ = g‘g 0610a2 —

k3(1 + €b,)d,56,,. Hence,summing Eq. (13) over all
Jj € d,,we obtain

3G, G,
__k Wy 2 ¢ _
o " a.6§)=1 bavttuo Myg T 0
k=0,1,2,...,M—1, (19)
where
Se= 20 23 Fph,,(). (20)
]EJk meEd
A similar summation applied to Eq. (14) gives
G,(U,0) = q,(0)0Guyy — 1)5(up,)06ey5)00py — 1), (21)

where ¢,(0) = P{y(0) = b,} is given by Eq. (10). Equa-
tions (19) cannot, in general,be solved for G, since
the S, are also unknown. However, we have found two
cases in which §, can be expressed entirely in terms
of x;; and G,. First,ifdJ = Z* and N =0 in Eq. (9), it
is shown in Appendix A that,for M > L,

M=1
S, =22 Ak—n)G, + 2
k=0 k=M<-~L+n

n=0,1,...L — 1,

Al —n— M)G,,
(22)
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S =

n

n
22 AMe—n)G,, m=L,L+1,...,M~ 1.
k=n-L
where A(f — n) = a,,{t) =r(k — n,t). Second,if J = Z,
it is shown in Appendix A that for M > L + N,
nj{V L-n
S, = 2 Am—n)G,, + A m— )Gy s
m=0 m=1

n=0,1,.,.,L—1,

a*N
S, = 22 Alm—n)G,,
m=n-L
n=L,L+1,...,M—N—1, (23)
M-1 n-(M-N)
S, = Mm—n)G, + 25 Alm—n+ M)G,,
m=a-1L m=0

n=M—N,...,M— 1,

In these two cases,therefore,we may determine G,s
k=0,1,...,M— 1 as the (weak) solutions of Eq. (19)
satisfying the initial conditions of Eq. (21). The mo-
ments of U(f) may be calculated from G,(U,¢) using
the formulas

<u°‘151(t) cot uansn(t))
M-1
= ,fi‘%,(u"‘xﬂx(t) Y eV, o,B8,=1,2, (24)

where
<ua‘81(t) Tt uanﬂn(t»k
= f:o ColUsthug g ** -t p dityy =~ dupy  (25)

and where we use brackets to denote statistical aver-
age. Because Eq. (19) is homogeneous in «_,, we may
calculate the nth order moments of Eq. (243 directly.
In fact,it is obvious that if for each 2 =0,1,...,M —
1 we multiply the equation for G, by the (*;°) distinct
nth order products Ugp, " U and integrate over all

Ui1s- -« Uz, we will obtain M("°) coupled first order
ordinary differential equations for the M("§3) distinct
nth order moments in Eq. (25). The initial conditions
<u“151(0) cee uanﬂn(o)) = 4,(0)0, 500 p, * " O g fOT these

equations are obtained from Eq. (21).

IOI. APPLICATIONS

In this section we consider specific examples of sto-
chastic processes x(¢) and y(¢) = f(x(t)) for which Eqgs.
(22) and (23) are valid. A process for whichJ =27,
N =0,and S, is given by Eq. (22) will be called a type
Iprocess. A process for whichdJ = Z and S, is given
by Eq. (23) will be called a type II process.

The class of type I processes which we shall study
may be described as follows. We take a, =j,j € 2%,
L=1, N=0, r;; =2(0) = — 2, Ajiel =A 1) =,
where A is a positive constant. Then x(¢) is the Pois-
son process and p; (1) = p;;(,¢ + 1) =0 for j <,
Py =[(— ! (A7) exp(— A7) for j = i. We as-
sume that p9 = §,,. For construction of the process
y(t),we take M = 2K,let g(j) =j, 7 =0,1,...,K,
g(]) =26—j,j=K+1,...,26— 1, g(j +2K) =
g(j), j € z*,and define f(j) = g(j) — iK. The ele-
ments of the set {04,b;,...,bq,_1} 0f possible values
of y(t) are bO :-K/Z,bl =b2K—i :t—K/Z,Z = 1,2,
...,K. Various properties of y(¢t) are derived in
Appendix B.
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From Eq. (22),we find that S; = — AGg + AGg,_; and
S,=AG, { —AG, n=1,2,...,2K — 1. Thus,the
equations for G, are

aGO . . \
—ai_ +£0(JO +7\.(10—7\G2K_1 =0 (26)

oG, , ) _
—a[—+£k("k+)\("k_)\6k-1=0’ k=1,2,...,2d— 1,
where
£ = Zz} bl 9 i U 9 K, U 9
= hlor) y = _— ' —
m wB -1 av B a“aa bt 28 a“w m” 18 auZBS’

K, =kE(1 + €b,).

n
If we multiply Eq. (26) by iF:ll o8, and integrate over

Uq1qy.--sUyg,We may derive ordinary differential
equations for the moments

(1) = Gt () -

a;,8; =1,2,k =0,1,...,2K — 1. In fact,we may show
by elementary manipulation that

(&)

oy Byt roBy, Yo, B, (t»k’

1
f{,!luaiei L,Gpdutyy - dugy
n

z
==L 5ai1 Uot(f)ﬂl"'

i=1

B._ 28.«.: (27)

128,05 0y ey

%i-1

n
)
+ K, 12315%2 U“lﬁl'" o, 180 1By g 08,
and from this equation and Eq. (26) it is clear that for
each fixed set of values 8;,8,,...,8, we must solve
a system of 2K - 2~ first-order equations for
Uo(t’:)ﬁl,,,anen, o, =1,2,k=0,1,...,26—1. Forn =1,

we let U , be the 2K x 1 column vector [IAQ, UL, ...,
U@E-DT (where ~ indicates transpose) and obtain the
two vector equations
Ujg =ATU,y +Uyy, Upy =—DU , +A\TUy,, (28)
where ' = d/d.t, T =[- Ou + 6i,j+1 + 6,00 ',21(—1],
D = [Kiﬁi]],i,] =0,1,2,...,2K — 1. The initial condi-
tions for Eq. (28) are

Ups(©) = 0,5[00(0),4,(0); - -, ag1 O] (29)
Obviously, Eq. (28) is equivalent to the single vector
equation

AT I

- D ATji’ Up = [U1p,Uzg]"s

UB, = MIUB , M, =|:

‘ (30)
where [ is the 2K x 2K identity matrix. Since M, is a
4K x 4K constant coefficient matrix, Eq. (30) has the
fundamental solution exp[tM,]. In order to study the
behavior of the moments (u g ()}, we must therefore
find the characteristic values of i;. We will consider
this problem later in this section and will turn now to
the development of equations for the higher-order
moments.

For n = 2,we( define the 2K(2>[<(~11)co_l_umn vectors
Us, 08, = [U%ﬁ;%ﬁz’ R ’U%Bl%ﬂz] and use Egs. (26)
and (27) to obtain the four vector equations

’
Uig,1p, =ATUsg 18, ¥ Usg 28, * Uzp 18, (G3Y

Uig 28, = = DUig 1p, T ATU1p 25, + Uzp 25,  (32)

Uéﬂllez = Dlelaz + ATUzellez + Uzalzaz: (33)

Uzs 28, = = DU 2s — DUsg 1p, + ATUzg 25, (34)

with initial conditions

Uotl Bzazﬁz(o) = 60116160(232[(10(0)"11(0), s yQZK-l(O)]‘:
(35)

As we have previously remarked, Eq. (1) is equivalent
to the two initial value problems u; + k2(1 + ey(t))u,
=0, ug(0) = 08,4, ug(0) =055, where ug(t) =u,,(t),
ug(t) =ugy(t), B =1,2. If we wish to calculate the
moments (uy (1) - u, (£)) and ) ()« ul (1)), we

i 1 (k) n 1 n
have to find only U181162-~ 18, and Uzﬁxzﬁ 28 We

shall restrict our considerations to this problem.
Then, since only the sum U,y 5, + Ugy 15 Occurs in
1772 1 2

Eqgs. (31) and (34) and since the coefficients of U, 5,
1772
and Uzs,1s, are the same on the right-hand sides of

Egs. (32) and (33), we may sum Egs. (32) and (33) and
obtain the system

Vi, =ATVL, + Vo, ,
Vgy, = — 2DV, +ATV,, +2V;, , (36)
Viy, = = DVyy +ATVs,

where y, = (31’62)’ V17z = U1511‘32’ szz - U161282
* UZBI 18, Vs Y, Uzejzaz . Equation (36) is equival-

ent to the single 6K X 1 vector equation

AT I 0
Vi, =MV, , My=|—2D AT 21|,
0 —D AT

vy, = [sz’Vzrz’V%r’ (37)

which has the fundamental solution exp[tM,]. Thus,
the behavior of the second moments is determined by
the characteristic values of M,.

The procedures used in obtaining Eq. (37) may be
generalized quite readily to give expressions for all
higher-order moments. We define the 2K X 1 column
vectors Ualﬂl .

oB, T [ By Byttt 0‘16; “'o‘nﬁn] ’
the n-tuple y, = (81,85,...,8,) and the 2K x 1 co-
lumn vectors men=Z)o’L1

sercty, Uoclﬁl

.,n + 1,where 2’ denotes a sum over all o, =1,2
n
such that 2} &; =n + m— 1. Then,if v, =[V,, ,
i=1 - 3 n
, Vn+1,7,,] ,we may show,using Egs. (26) and

“'“nﬂn’ m = 172,

Vg IRERE
(27), that v, satisfies
n

VI

b (38)

n = MﬂV7n’

where M, is an (n + 1) X (n + 1) array of 2K X 2K
matrices

M, =[M,], ij=1,2,...,m +1, (39)
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and

Mi] =AT6£J + t.Iol’*’l,j-— (n + l_j)Déi,]+1. (40)

The initial conditions for Eq. (38) are

V (0) [Vly 0), L] n*l.yn(o)]~’
V.mY,,(O) = ( 'ZP.I 60116160262”' banﬂn) (41)
X[qo(O),ql(O),...,qu_l(O)]~

Again,the fundamental solution of Eq. (38) is exp[tM, ]
and the behavior of the nth moments is obtained from
the characteristic values of M ,.

fIw,j=12,...,n +1,is a 2K x 1 column vector
and W = [WI,WZ, .oy W,q] isan ( + 1)2K x 1 co-
lumn vector, then,using Eqgs. (39) and (40), we see that
the characteristic value problem M, W = sW takes the
form

WZ = — (A.T - SI)WI,
mW, ., =— QT —s)W,, + n — m + 2)DW, _,,
m=2,3,...,n, (42)

(/\T - SI)Wn,l = DWn.

In the case n = 1,Eq. (42) is equivalent to the charac-
teristic value problem

[AT — s)2 + D]W, =0, (43)

and for the second,third,and fourth moments we ob-
tain

[@3 +2(@,D +DGYH|W, =0, n=2, (44)
[a4 + 3(62D + DA2) + 4G DG + 9D2]W, =0, n =3,
(45)
[a5 + 4(G3D + pa3d) + 6(G2DG, + G, DG2)
+16DG D + 24(G,D? + D2G )W, =0, n =4,
(46)

where @, = AT — sI. For arbitrary n, Eq. (42) yields
a characteristic value problem of the form
®,(@,,D)W, =0,where ®_ is a polynomial of degree
n+1,®, =G8%1 +n@2D + DGE%) + ---,but we have
not found the general expression for @, . We recall
that D = ] = [k30;, + k36, ] = k3 + eB.
Hence, the sofutlons s,ilV of Eqs (43) (46) will de-
pend on the parameter ¢. For example, substituting
for D in Eqs. (43) and (44),we obtain

(G, +ikgl) (@, — ikyl) + eBlW, =0, (47)

[@,(Q, + 2ikI)(@, — 2ikyl) + 2e(G,B + BQ )W, =(4%.)

For ¢ = 0 the solutions of these equations [and of
Eqgs. (45) and (46)] are easy to obtain. In fact,as we
show in Appendix C,the matrix T has 2K distinct
eigenvalues 74,7y,...,Tg._1,Where 7, =6, — 1 and
¥, are the 2Kth roots of unity,and a corresponding
set of 2K orthogonal eigenvectors X, X;,... Xy, _
Thus, there are 4K distinct values of s which satisfy
Eq. (47); we denote them by s = (— 1)%kg + A7,
a=0,1, v=0,1,...,2K — 1. Similarily,there are
6K distinct solutions of Eq. (48), s%) = 2iky8 + AT,
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B =—1,0,1. A completely analogous result holds
for Egs. (45) and (46) when ¢ = 0.

For € > 0 we have used (see Appendix C) a perturba-
tion analysis to obtain the characteristic values of
Eqgs. (47) and (48). We assume

o0 o0
s= 25 s,€n, W, =) Y €. (49)
n=0 n=0

Then, substituting Eq. (49) into Eq. (47), we find that
s takes the 4K values given in the previous para-
graph,that s, = 0,and that

Sy = sé‘;) (4K)tk51)—2)\

2K-1

A R (e O )|

x esc (—M _zé‘)">, (50)

where the prime on the summation sign indicates that
the terms for which v — u =0,42,+4,... are omitted.
A similar calculation performed with Eq. (48) shows
that in the case of the second moment s, = sy, =
2ikgB +AT,, B =—1,0,1, s; = 0 and that
, %71
sy =%, = — ikok2(12/gl-4)7" Z}o

x[((l— 1B1) = igy- 6, - ,,)) ((1— 181 + )
+i2—20(9” - 9“))]‘1 (;3 +i12—0(0” - 9“)>

x cscd <(V_;KL)") , (51)

where the prime on the summation has the same
meaning as in Eq. (50)

The expressions of Eq. (49) are readily justified. Con-
sider, for example, the first moment. In order to find
the characteristic values of Eq. (47), we must find the
roots of the equation F (¢,s) = det[(G, + ikpl)(@, —
ikgl) + €B] = det[F]. Letting @ be the matrix whose
columns are the characteristic vectors of T, we find
that (since |detQ| =1 = 0) F, = det[@*~ S’Q]
det( diag{[s — (7, — ik )][s— W1, + kgl +
€Q* "BQ), where we show in Appendix C that the ele-
ments (Xp BX ) of the matrix @* “BQ are zero if p =
v and $[(— 1)# v — 1]k2(2K)~1 esc?[(u— v)n(2K)~1] if
i # v. Obviously F, (e, ) is a polynomial in € and s
is therefore an analytic function of these variables.
From the last expression for F, we see that

F0,s) = aﬂm (s — s("‘))
p=0,1,...,2k-1

Thus, F, sO , s) has a simple zero at each of the 4K
pomts Sg, - By the implicit function theorem for func-
tions of two com;()lex va.rlables6 there are circular
neighborhoods N “’), (O) ofs =s®and e =0,
respectwely,suc‘h that F (( sshasa un1que root s }‘a)(e)
in N® (s0 ’) for any given ¢ in N(®)(0) and such that
(“)(é) is smgle -valued and analytic on N(=)(0) and
shtisfies the condition s o"(O) = s( @) Henc‘é for € in
N0} = nN(;})(O) all roots of F (e s) are analytic in
¢ and thé expans1on of s in Eq. (49) is justified. The
components of W, corresponding to any particular
root of F, are determined by Eq. (47),and so it is ob-
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vious that these components are also analytic for ¢
in a neighborhood of ¢ = 0.

Let us consider the behavior of the first moments for
K =1, 2 in the limit 02f small ¢. In this limit we may
take s (c)ﬁso‘;’ + € s“” — 1)° kg +AT, + € séu

Since Re(f ) < 0 for u = 0,all the a(ﬂ)(() give an ex-
ponential decay as { — « with the possxble exception
of s{(e) (recall that 7, = 0). For Kk =1 we find that

s§() = (- 1)%ikg — €2(32) A lko/M2[1 + W/ko)?] !

x[1+ 1D%%0M/kg)).  (52)

In this case y(t) is a random telegraph wave with
values +; ,and Eq) (52) shows that the solution cor-
respondmg to 50 (¢) also decays. This result has
been obtained by several authors.2,7 The case A = 2
is somewhat more interesting. In this case we find

s§e = 1)%ikg— £(16) A (ko/A)?
x [1 447 0/ kg)* TH[1 = L0/kg)%
+ (= D% Nk} (53)

Equation (53) shows that the solutions corresponding
to s((, )(€) decay as t —  if A /kg) < V2 and increase
exponentially as ¢t —» © if A/kg) > V2.

It is of some interest to compare the solutions of
Eqgs. (52) and (53) with those obtained by applying per-
turbation methods to the governing equation. For K =
1 it is well known?2,7 that the first-order smoothing
approximation5 predicts the characteristic values of
s exactly. For K = 2 this method gives a characteris-
tic equation for s which is of the sixth order and thus
obviously cannot be exact. However,in the limit € -
0 two of the roots of this equation correspond to those
given by Eq. (53), while the remaining roots give an
exponential decay as { — «. The two-time expansion
of Papanicolau and Keller,® when applied to the cases
K =1,2,also predicts the values of s given by Egs.
{52) and (53).

Finally, let us consider briefly the behavior of the se-
cond moments for the case K = 2. In the limit of
small € we may take s, ’(e) = sé,ﬂg + ezszB = 2ikyB +
AT, * ezsée),where g=—1,0,1, =0, 1,... 2K— 1
and s$? is given by Eq. (51). Again,since Re(T ) <

u # 0,all the s(5>(e) give an exponentlal decay as t -
© with the p0551b1e exception of 30 )(¢). For K = 2,we
find from Eq. (51) that

s$9 =87 koM + 47 k) T + 27 (0 /Rg)],

(54)

s$ = st = — 4T R/NP[L F 4T k)T
x {[1— 47 0 /kg)? + 87 0 /ko) ] + 275 (W ko))
(55)

Equation (54) indicates that the second moments will
increase exponentially as ¢ — . As in the case of the
first moments, the two-time expansion of Papanicolau
and Keller predicts the values for s given by Egs. (54)
and (55).

We now turn to a description of a class of stochastic
processes of type II. Wetake a, =j,j€ Z, L =N =
1 ’\1:+1 —h(—' 1) —'Az 1. —A(l =A, kii == 2)"

where A is a positive constant. We show in Appendix

D that, for this process,p, (1) = p,; (t t+71)=
exp(— 2)«1)1 {(2A7),where 7, is the modlfled Bessel
function® of order n. We assume that p0 =6 ,. For
construction of the process y(t), we take M = 21\
where K = 21\ and K' =1,2,3,. .,f(])_], 0<]
K'y f(j)=2K"—j, K’ +1<j<2h f= ) ==13),
and f(j + 4K’) = f(j). The elements of the set {60:61,
ybagr-1} of possible values of y(t) are by = bzx' =
zland b = bzhl_J =7, szl.j —-be.) —],_} =1, 2
If we use Eq. (23) to calculate S, for the type II pro-
cess described above and substitute the result into
Eq. (19), we find that

aG

Wg + oCoGo*A((il—‘ 260 +Gm(.1) =0,
5T G, —AMG ;1 —26,+G,.,)=0 (56)
v=1,2,...,2 — 2,

3Go, -

—a*z;(“l + L1641~ AMGog2 — 2641 +Go) =0

It is clear from the similarity of Eq. (56) to Eq. (26)
that the various order moments of u,(¢) will satisfy
equations of exactly the same form as we derived in
the case of the type I process. In fact,the only differ-
ence will be that of 2K X 2K matrix T will be replaced
everywhere by the 2K x 2K = 4K’ x 4K’ matrix T de-
fined by

T = (— 26” + Gij-l + 61’_]*1 + 6i051.41("1 + 5,““1-1610)9

i,j=0,1,...,4K'— 1. (57)

Thus,the nth moments will be determined by solving
Eq. (38) with M, an (n + 1) X (n + 1) array of 2K X
2K = 4K’ X 4K matrlces M, =[M;), i,j =1,2,

n +1,and M, _)\Tb + 1125,.1 —(n+ 1—])D£5,l}.1
The time behavior of the nth moments will again be
determined by the characteristic values of M,. The
procedure used for solving this characteristic value
problem in the case of the type I process may be car-
ried through exactly as before and, in the case of the
first and second moments, leads to Eqs. (47) and (48)
with @ = AT — s/.

The solutions of Egs. (47) and (48) for ¢ = 0 may be
obtained by solving the characteristic problem for 7.
Since T is a real symmetric matrix,all its eigen-
values, Ty, Ty,..., T44 1,are real. However,they are
no longer distinct as in the case of . We show in
Appendix D that

7, = — 2[1 — cos(vn/2K")], .
(58)
Hence, there are two simple roots, 7, and 7y,,,and
2K’ — 1 double roots. The system of 4K’ orthonormal
characteristic vectors X corresponding to these
characteristic values is given by Eq. (D15) of
Appendix D,

For 0 < € << 1 we determine the characteristic
values of Egs. (47) and (48) by assuming the expan-
sions of Eq. (49) for s and W, and using the perturba-
tion analysis given in Appendix C. The details of the
analysis are slightly different in this case due to the
fact that T has repeated characteristic roots. For
example, when we calculate s;‘: for the first moment,
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we find that because 7, = 7,,._,.both ¢! and ¢\%,..

of Eq. (C14) are undetermmed l'lowevef'f‘)s2 may Stlll
be found from Eq. (C17) since both (A BX )and ()x

BX K-y ) vanish. The justification of the perturbatlon
expansxons can be carried through as before with
slight modifications due to the existence of repeated
roots.

For the first moment we find that

So = Sg) = (- 1)%iky +AT,, @ =0,1,

p=0,1,...,45'— 1 (59)

$; =0 (60)
From Eq.(C17) and the fact that 7 — 7=
2[cos(vn/2h ;, — cos(un/2K")] = 2(c — c ), we find
that

4K'-1 2 9~
2 {le, =, )1+ (/ko) (e, ~¢,)°} !
x [1= (= D%/kg)e, — ¢ )IX,,BX )%, (61)

where the prime on the summation indicates that
terms for which u + v = 0,+ 2, 4,... are omitted
and where the scalar products (A BX ,) are given in
Appendix D, Eq. (D16). In the hmlt of small € ,Eqs.
(59)~(61) show that the characteristic values s(a)(e)
of E% (47) are given by s®)(e) = (— 1)aik, + AT+
eZs As in the case of the type I process, s(“)(“e)
for u # 0 lead to exponential decay as t — «©, 'For the
type 11 {)rocess ,however, Eq. (61) shows that s(‘” <0,
Thus, s5’(€) also leads to exponential decay as t - ®,
and there is no possibility in this case that the first
moments will increase with time.

sp =850 = (8Ak3) 7

Turning to the second moments, we find that

So =S8 =2ikeB +AT,, B=-—1,0,1,

v=0,1,...,4K'— 1, (62)

s, = 0 (63)

and from Eq. (3. 25),we obtain

s, =59 = [ko(618] — 2)]} Z) {[1 +(>«/ko) (c, —¢,)’]
X[u—lM)+Qﬁa(c—c)]F
x {0 /ko)c, — ¢ D /kg)? (e, ~¢)? + (1 +18D)]

— ig[2(1 - 18]) + 0/ko)*(c, — ¢,)*] 1} &x,,BX,)2,

where the prime on the summation has the same
meaning as in Eq. (61).

If we approx1mate the characteréstlc values of Eq.
(48) b;r sP(e) = 2ik o tAT, + € sz,,,we see that

[ (e)]<0,v_0 1,. ..,4K 1,and the second
moments decay exponentially as ¢t — 00 This behavior
should be compared with the results for the type I
process (with K = 2) given in Eq. (54) where an ex-
ponential increase was found.

IV. SUMMARY

We have determined the statistical moments of the
solutions to the second order ordinary differential
equations u” + k3[1 + ey(¢)]Ju = 0, where 3(¢) is one of
two particular types (I or II) of stochastic process.
The two types of process which we have considered
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in detail have the common properties: (1) y(t) is de-
rived from a countable state space Markov process;
(2) y(t) is bounded and can take only a finite number
of values. For the type I process,y(t) oscillates be-
tween its maximum and minimum values, and in the
interval between two adjacent extreme values y(¢) is
monotonic. For the type Il process,y(t) again oscil-
lates but its successive maxima and minima decrease
on the average.

Corresponding to the different general appearance of
the type I and II processes as discussed above,we
have found rather striking differences in the behavior
of the first two statistical moments of the solution
process of our differential equation. For the type I
process we have shown that if the ratio A/k is large
enough, the first moments may increase exponentially
as { - ©,while for the type II process the first mo-
ments always decrease for any value of A/k,. If we
assume { is a length coordinate,then A/k, 1s essen-
tially the ratio of the wavelength of the propagating
wave u(t) to the correlation length of the random pro-
cess y(f),and we can interpret these phenomena as
follows: For the type I process, phase cancellations
always occur if A/k, is small and the average wave
always decays,but phase additions may occur for A/k,
large and the average wave may increase. For the
type II process, fluctuations of y(¢) away from zero
(long wavelength phenomena) always cause phase can-
cellations and result in decay of the average wave.
The three-level (K = 2) type I process gave second
moments which increased exponentially as ¢t — ©
while the second moments for the type II process al-
ways decreased. For the type I process we see,
therefore, that the destructive interference which
caused decay of the average wave (for A/kg small) is
always erased when the wave is multiplied by itself
before averaging. In the case of the type II process,
fluctuations in y continue to cause the second mo-
ments to decay.

It is clear that the two problems we have treated in
detail are directly applicable to the study of the pro-
pagation of time harmonic electromagnetic waves in
one-dimensional layered media. We hope also that the
exact solutions we have obtained may be useful in
testing various perturbation methods for stochastic
equations.

APPENDIX A

In order to derive Eq. (22), we note that for the case
under considerationd, = Z' ={v + kM: k =0,1,2,
..} and therefore

G, =2 F, =2 Fuw

pCZ

i g, = 25720 F,\,, then since A, = Mk — p) is non-
zero only in the range ~- L € k— p < 0,we find that

0
o,= 2 Mm)F,,,, OspsL-—1,
e
0
o, = 2 A(m)F,.,, w=L.
m=-7

S, may be expressed in the form

)

E 0 = 2()0“”1”,

pCZ

v=0,1,...,M—1.
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If we assume M > L,we obtain,for v =0,1,...,
L—-1,

0 0 0
S, = 2 MmE,.,, +Z)

E A(n/L)I? vtlM+m
1

m=- =1 m=-L
0 -v-1 oo (Al)
= E A'(‘}ln)z‘l;‘u*lM*’m + E E A(m)FU*lM"‘m
m=-v m=-L l=1
0 -11;1
= E Mm)Gy 2 Mm)Gyu ey
and,for v=L,L +1,...,
0 0 (4]
S, =23 L AMF,yin = 23 M),y (A2)
1=0 m=-L m=-L

Equations (A1) and (A2) give Eq. (22) after suitable
changes of summation indices.

Equation (23) is derived by similar elementary mani-
pulat1ons In this case J ={v+EM:k =0,¢1,

..} and G, _Z}“EZ F =222 F,1n- The quan-
tlty o, mtroduced in the’ precedmg paragraph takes
the form

N
o IkZ_) Fdy, = Z}Lh(m)me, p=0,+1,+2,...,
il !

since in this case A ,, = A(k — p) is zero outside the
range— L s k— pu < N. Then forv=0,1,...
o0

Su = Z‘E- ou+1M = Z; E A'(rﬂ) vtiM+m* (AS)

l=-00 m=-L

We assume that M/ > L + N and we find, for example,
that

=S} N
SO = ; (E A(— m) -m+iM + E:O)‘(m)Fm+1M>) (A4)
S = ZL}l)\(— m)Gym + éo)x(m)Gm.

Similar calculations give the remaining express-
ions in Eq. (23).

APPENDIX B

For a Poisson process x(t) starting at ¢, < 0,the pro-
bability that x(t) =j, j € Z*,is given by10
p,() = (j!1)"1(a7)ie—*T,

=p0]'(t0:t0 +7) T=t‘—t0.

(B1)

Thus, for the process y{t) considered in Sec.IIl,the
probability g,(¢) that y(¢) =b;, ¢ =0,1,...,2K — 1,is
given by

o0

w0 =2 p0=2 Divam® = 25 [ +20K)1 ]

=0 v=0
x (AT)it2uke"AT  (B2)
In order to sum the series appearing in (B2), we in-
troduce the notation 6, = exp(ina/K], n = 0,1,...,

2K — 1. Then,since ¢, are the 2Kth roots of unity, it
is easy to show that

2K-1
(2K)™1 25 om =

n=0

1, m = 2vK

. (B3)
0, m = 2VK

Now we define

Holx) = (2K)~ 12 exp(8,x)=(2K)~1 Z;o Eo—-gmxm
K (BY)

M- 1,

= (2K)1 wom,<2 9m>

Because of the identities in Eq. (B3),
O
Hylx) = § ((2vK) 1)1 x 2K, (B5)

Comparing Egs. (B2) and (B5), we see that g,(f) =
e~ TH (A7),

If we define
Hyl) = [ H 6,
we find from Eqs (B2) (B4),and (B5) that

Hikx) =

i=1,2,...,2—1, (B6)
Z) 8% exp(6,x)

= 25 [G + 2uk) 1] Wxiv 2K,

»=0 (B7)

q;@t) = e H,(r7). (B8)

The expectation value of y() may be found from Eq.
(B8). By definition,

2K-1
Y = z)o b.q,(t)

&1
=g~ Z;li (H,(7) + Hyp ; A7)] + KH (A7),
i-

(B9)
where we use the fact that b; =byy =i — K/2,i=
0,1,. . If we use the 1dent1ty 2Ndnx" =
[x(l — x”) — Nx¥(1 —x)]J(1— x)2,x # 1,to0 obtaln the
formula
K-1

22 m(6™ + 67m)
m=1
KK — 1), v=20
Lk, v=2,4,...2K—2,

K—csc2(vn/2K), v=1,3,...,2K—1

{B10)

we may calculate the sums that appear in Eq. (B9).
After some manipulation, we obtain

(@) = — (2K)"le=?r f}l esc2[(2v — 1)n/2K)

x exp(6,,_4A7). (B11)
The joint probabilities g,,(¢,,¢;) =P{y(t,) =b,,y(ty)
=b,}, t3 > t;, may be found from
qij(tl,tz) = 2* Z)* pu(t1)pu“(t1’t2)
u€Z- p€Z~
Z€)Z E bEp,(t— & + 1), (B12)
v

1

Changing summation indices from v,uto v,0 = u— v,
we may write Eq. (B11) as

a;,(t1st) = 9,40) 23 polta— 1t + tg), (B13)
otéj_i

where Z; ; ={j—i + 20K:0 € Z}. Since p, =0 for
0<0, Eq (B13) gives
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20
qi(tl) Eopj-i*on}{(tz -t + to) = qi(tl)qj_i(tg —t — to), izi
6=

qij(tl’tz) =«

Since y({t) can take only K + 1 distinct values i — K/2,
i50,1,...,K,it is convenient for most purposes to
use the probabilities @ ;;(t;,t,) = P{y(t;) =i — K/2,
y(t,) =j — K/2}. These may be obtained in a straight-
forward manner from Eq.(B14). We have,for example,
Qoo(tl,tz) =qO(t1)qO(t2 - tl + to);
QKK(tl,tz) = qK(tl)qo(tg - t1 + to),
Rigt1,ty) = a;(t g, ;(ty — 1y + 1)

g8 eille — £y + L)
Q; (ty:t5) = CIo(t1)[Qj(t2 — it T )

+ qZK—j(tZ — b * o),
Qo,((tlytz) =q0(t1)qK(t2 - tl + to):
Q;,(t1,ts) =a;lt)a,.;(Ex —t + ty)

tGopilty — 8 + 1))

+ qz,{-i(tl)[qi+,-(t2 - tl + to)

+ q2K-j+i(t2 — 4 to)]’

(B15)

where 1 < { < j <K — 1. The probabilities in Eq.
(B14) may be used to find the second moment
(y(t1)y(t,). By definition this quantity is

24-1
(y(tl)y(tz» = izobib]qi]‘(tptz)

Gt

2K-1
= Z) ijQij (tlrtz) - (K/Z)z.

ij=0

(B16)

It is instructive to obtain an explicit expression for
the second moment in the limit {; » — ©. In this
case, it is clear from Eq. (B8) that ¢,({) - (2K)71,
i=0,1,...,2K — 1 and that Q; (t,,t,) depends only
ons =t,—t;. From Eq.(B15),we obtain

R(s) =yt )ylt, +sP
A1 K-1
=K?Q + 2 0%, + 2K T3 nQuy
n=1 n=

(B17)
K-2 K-1
+22; 2 nmQ,, — (K/2)2.
n=1 m=n+l

Simplification of the sums appearing in Eq. (B16) is a
lengthy but straightforward process. Using Eq. (B10)
we find that

-2 i(\ 4 7w
R(s) = (2K) UZ_:ll exp[— (1—64,.1)As] csc <(2u— 1)——21?)

(B18)
For K = 1,2, R(s) is given by the formulas

R(s) =4"1e-2*s, K=1
R(s) = 2"'e~*scos(rs), K =2.

(B19)

APPENDIX C

If X =[xg,%y,...,%9, 4] »the characteristic value
problem TX = 7X for the matrix T = (~6;, + 6, ;.1 +
6,0%,, 2¢-1) leads to the equatioris
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o0
q;(ty) Eopj—i+21{+20t((t2 — b titg) = UG o by — £y + £g),  j<i
. aG=

(B14)
r
— X5 t X5, =TX
0 2K -1 0’ 1)
X1~ %, =T%,, m=1,2,...,26—1
and the characteristic equation
det(T — 1) = (1 + 1)2%6— 1 = 0. (C2)
Equation (C2) has the solutions
T,=4,—1, 6, =exp@mv/K), v=0,1,...,2K—1,
(C3)

and, therefore, 7, = 0 and 7, has a negative real part,
v=1,...,2K — 1. With 7 = 7, in Eq. (C1) we find
that

%, = Q@K)"t/2g-m, m =0,1,..,,2K — 1, (C4)

and we have normalized X, = [Xp,,%1,5+ .- %541 ,]
50 that
(XU’XU)EX)E-'XU:ls (C5)

where * denotes complex conjugate. It follows from
the relations
2K-1

3 —
2 61 =2Ks,0, 6% =06_, =61

that

(XU,XP)=6W. (C6)
Let us consider the problem M;W = sW. We assume
s and W have the expansion given in Eq. (49) and sub~
stitute these into Eq. (47). Equating the coefficients
of €9 equal to zero, we obtain

(@, + ikoI)G,, — ikoI)Yo =0, C7)
(G, + koG — ikoD)Y .y
o+l
+ 25 (Z} $pS, 1 — ZAsaT> ) .
a=1 \B+y=a
+BY, =0, 0=0,1,..., (C8)

where @, =AT — s,/. From Eq.(C7) we obtain the
4K valued

So =5 = ( 1)%ky + 1T,

@=1,2, v=0,1,...,2K— 1. (C9)

The characteristic vector corresponding to s((")"u is
Y, =X,. For 0 =0,Eq. (C8) gives

(GSO + lkol )(GISO‘ LkoI)Yl - 231(A.T - SOI)YO

+BYy=0. (Cl0)

We set s, = sgx: , Yo =X, in Eq.g(ClO) and assume

1 (o) .
c, X, in terms of

U

that ¥, has the expansion ¥, =

the complete set of vectors X, . When these substitu-
tions are made,Eq. (C10) becomes
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2K-1
2 c®nr, = T, — 7)) — & D2k,

+ 1)°‘2ik031Xul +BX, =0. (C11)
Now, if we form the scalar product of Eq. (C11) with

X, and use the fact that x,,X,) =96,,,we obtain
e = 1)“(2ik0)'1(XH,BXy) =0, (C12)
since
24-1 2K-1
(X,,BX,) = k3 }_} b, X% %, = k3(2K) Eob’" =
m=
(C13)

Thus, the first-order correction to s is zero. For
v = u,we find

el = — P, — 1 ), — 1)

e 1)“(2ik0)]}‘1(XU,BXu). {C14)

c(a“) is undetermined by this procedure. We turn now
to the calculation of the second-order correction to s.
Setting ¢ = 1 in Eq. (C8), we obtain

(@, + kol )G, — ikoI)¥y — 25 (AT — so0)¥;

+[s21 — 25,(AT — soI)]Y, + BY; =0.  (C15)

In this equation we set sy = So s Yo =

Y, = 2% ewX,, and we assume that I;' has the ex-
pansion ¥, = Z)ZK 1d<°§,X Equation (CIS) becomes

E dka)z\('ru — 7 )A(r, — 71,) — & 1)*2kylX,

25 -1
+ (- 1)22ikgs, X, + 5 ABX, =0,
v=0

(C186)
Forming the scalar product of Eq. (C16) with X, ,we
obtain

Sp = 5§ = — (Qike)? z) c(“) (x,,BX,). (C17)

Using Eq. (C14) and the fact that (X“,BXP) =0, we ob-
tain

Z){)\T~T

~ (= 1)% 26k, I(

It is not difficult to show that

s§ = @iky) T - 1T T, — 7]

x,,Bx,)1%}. (C18)

(X,,BX,) = 5[~ 1)¥v — 1]kF(2K)™1 ese?[(u— v)n/2K].

(C19)

Thus,the summand in Eq. (C18) is nonzero only for
u — u odd, and since 7, — T, = g, eﬂ,we can express
q. (C18) in the form shown in Eq (50).

Fmally,let us consider the problem M W = sW.
Using Eqgs. (48) and (49), we obtain the perturbation
equations

DYy =0, (C20)

> DY, +2A(TB+BT)Y _,—4 2 s,BY, =0,

a+B =0 atB=a-1 (C21)
where

Dy = G‘So (G:S0 + Zz'kol)(aso ~ 2iky1) (C22)

T, =— 35,(Q, +37122ko1)(G, — 3-1/22iko]]

+3(1-6,,) X , Sar 15801 @,

a*B =0~

- (1 - 601)(1 - 602) E

Sus1 2 Sqe1Sge1s
prv=0-3 arB=p

c=12,.... (C23)
From Eq. (C20) we find that s, = s = 2koB + AT,
g = — 1,0,1 with the correspondmg exgenvectors

¥$) = X,. If we substitute these values into Eq. (C21)
with ¢ =1 and assume Y, =224 cP) X, we find as
before that s; = 0 and that for u = »

c;(iBu) == Z[A(
X [A('rp -T,)—

T, =~ 1,) +2iko(1— |B1)]?

2iko(1— |61 + ALK, , BX,).
(C24)

To determine the second-order correction to s,we

set ¢ = 2 in Eq. (C21) and evaluate the resulting equa-

tion for s = 30), $1=0,Yy=X and ¥, =

2245 1C(B)X Assummg the expansion Y, =

2K d\B)X ,we find

z;o d®A(r, — T )MT, — 7,) + 2iko(1 — |B] — 28)]
X7, — T“)— 2iko(1— 18] +B))X
+ (12]8] — 4)k232X + 2X zﬁlcgg)(l‘B + BT)X,
v=0

—4s) 23 c®X, = 0.
Taking the scalar product of Eq. (C25) with X, and
using the fact that X*~T = 7, X*~,we obtain

-1

"2
Z‘,O[A.('ry — 7,)—4Bik,)

(C25)

sy =5 =—2(12( 81— 4 %;”

xc®X,,BX,). (C26)
If we substitute for ¢(8) from Eq. (C24) and use Eq.
(C29), we find that s(zﬁfj may be expressed in the form
shown in Eq. (51).

APPENDIX D

The forward equation for the p,;(7,t) of the type II
process may be obtained using %he techmques of
Feller.10 We find that for u,» =0, 1,+ 2,

5
Pu 2, + Dy 0e1)s ppu<r,v)=cw. (1)

For fixed 7 and u the solution of this set of ordinary
differential equations for ¢ () =P (1,1) may be

“:‘\(pp,w‘l -

found by introducing the function Q(s,¢) = Z} o, t)x

explisv), — 1< s s m i =v— 1, Summing the equa-
tions ¢, exp(isv) = xg,,, — 2% + ¢, explisv)
over all v, we find that i

9—"—2 = Wfcos(s)— 1)@, @Q(s,7) =eirs, {D2)

The solution of (D2) is @(s,¢) = exp[ius + 2r(cos(s) ~—
1}t — 7)],and it is clear from the definition of Q that

P}w('r,t) =g,t) = (2”)_1fIWQ(S,t)—i“st.
Substituting for @(s,¢) in Eq. (D3) and introducing the

(D3)
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change of variables z = e!s,we find
p“u('r,t) = exp[— 2x(t — 7)](2mi)~ 1
xfr exp[A(t — )z + 27 1)]e~ v+ 1)z
= ¢ exp[— 2A(t — 7)), (D4)

where T is the unit circle. The function ¢ in Eq. (D4)
is just the coefficient of wv~# in the Laurent expan-
sion of

o0
exp[A(t — TVw + w~1)] = 25 wrr [2a¢ — 7)),
n=<oo0
where the I, are modified Bessel functions of index
n.9 Thus,

b, (1,t) =exp[— 2A¢— D], [2A¢~ 7)]. (D5)
The characteristic value problem for the matrix 7
associated with the type II process is somewhat more
complicated than that associated with T. If we let
D, (x) be the determinant of the n X n» matrix

x1 000 ... 01
1x100... 0
01x10... 0

D,(x) = det . ’ (D6)
1 x1
10... 01«

then the characteristic equation for 7,det(T — 7I) =
0,is just D,,,[— (2 + 7)] = 0. In order to find the
roots of this equation we shall first find a simple ex-
pression for D,. Expanding the determinant in Eq.
(D6) by the elements of the first row and performing
similar manipulations with the resulting factors,we
find that

D,(x) =xa, &) — 24, ,(x) + 2( 1)~, (D7)
where. A (x) is the determinant of the » X n tridiago-
nal matrix

x10060... 00

1x100 ... 00

01x10... 00 (D8)
A, x) = det

0 1 x

Expanding 4 (x) by the first row, we find the relation
A,) =x8,,0)— &, (). (D9)

Equations (D7) and (D8) imply that D,,, =4,,; —
A,y + 2 1) wh11e Eq. (D9) gwes the relation A,

— B, 1=x(8,—5,5)— (8,.1— 4,_3). Combining
these two recurrence relations and defining
C, ) = D,x) +2( 1)7, (D10)

we find that C,(x) satisfies the recurrance relation
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Ch1 =xC,(x)—C,_,(x). (D11)

Using Eq. (D6), we obtain, for example,C,(x) = x3 —
I, Culx) =x4 — 42 + 2. Thus, the C, are modified
Chebyshev polynomials of degree n,? and we have

D,lx) = [Clx) — 26 1)7] = 2[T,(x/2) —  1)7),

where T, is the Chebyshev polynomial of degree n.
The characterlstlc equation for T is therefore

(D12)

Tax[— 27— 1]— 1 = 0,and this implies that the cha-

racterlstlc values of T are

7 = — 2[1— cos(vn/2K")], v=0,1,...,4K' — 1.
(D13)

The characteristic vectors corresponding to this set
of characteristic values are determined from the
equations TX , = 7 X, or

Xy, — %0, +Xggmy, =T Xg,»
(D14)
’4KI'_ 2’

Hogrg— Mgy, + X0, = T Xggr 1,

x’—l,u_zxju +xj*1.u Ty,

] i=12,...

and it is easy to see that Eq (D14) leads to the equa-
tionsx,, =S, ;(z,)x;, — (z, ) Xawiop, =

3 1 1v -2 0v? V4K
S;(z )xol:, § 1(z Wy ,0] _J 2K’ w erez
2’ cos(un/ 2K’ ) and'S. ; are modified Chebyshev poly-
nomials. These equations lead to the following com-
ponents for the normalized characteristic vectors

x;, = 2K')"Y/2 sin(jvn/2K'), j=0,1,...,4K'— 1,

v=1,2,...,2K'— 1,
xp, = — (2K')"Y2 sin(vn/2K'),

, = (2K')"1/2 sin((j — V)vn/2K '), (D15)
i=1,2,...,4K'— 1, v=2K' +1,...,4K' — 1,

x 0= (ax’)-1/2, Xiox' = 1K) V2,
ji=0,1,...,4K' — 1,

where (Xu,X/) =6,

In order to use the perturbation methods of Appendix
C,X&g_xlleed to compute the scalar products (XM,BXU) =

k3 Z_} b;x;,%;,,where the b,,j = 0,...,4K' — 1 are

J
the possible values of the type II process under con-~
sideration. In the case u = 0,for example,we find
using Eq. (D15) that for v = 1,2,...,2K' — 1,

(Xg,BX,) =[1—  1)v [K s1n<2) +2 Z} j sm(ﬂ)il.

Since
n

2 j sinjo = —E<Z cosyG)

i1

n

T (cosé
6<]§0 J( )>’
and since the sum of the first»n + 1 Chebyshev poly-
nomials is 235 T; (x) = 3[1 + U,_, x) + U,(x)], we find
that (Xo, BX,) = [1 — (- 1)*J4V3K")- 1&g sin(v1/2)
csc2(vn/4K’). Smnlar elementary but rather tedious
calculations show that (X, BX‘) =0foru+v=0,2,

4,... and for 1 < p, u<2K ——landthatforu+v—
1,3,5,...

k4
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(X,,BX,) = — (cos(vn/2K'))" (X, BX,) = (2V2K ')~ 1k}
x sin[(u + v)n/3]csc2[(u + v)n/4K'],
p=0,2K', v=1,3,5,...,2K'—1,

(X,,BX,) = — (2K")" 1 {sin[(u + v)7/2]

x cot[{u + v)n/4K") — sin[(v — wn/2]
x cot[(v— wn/4K'l}, (D186)

2K' +1 < pu, vs 4K — 1,
(X,,BX,) = — (4K')"1k3 sin(un/2K"){sin[(n + v)1/2]
x csc2[(u + v)n/4K'] + sin[(v — w)n/2]
x csc2[(v— wn/4K'1},
1svs2K'—1, 2K'+1spyu<4K' —1.
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Newman and Penrose have given conditions on the asymptotic form of the Weyl tensor in empty space-time
that are sufficient to insure that the space—time is asymptotically flat at null infinity and has the peeling pro-
perty. We give congiderably weaker conditions and show them to be suifficient for asymptotic flatness. Under
the weaker conditions the asymptotic behavior of the Weyl tensor is more general than the case where the
peeling property holds. The asymptotic dependence on a suitably defined radial coordinate is given for the
basis null tetrad, the spin coefficients, and the tetrad components of the Weyl tensor.

1. INTRODUCTION

Many attempts to investigate gravitational radiation _ o d _ -3

from bounded sources have been carried out by con- ¥o = 0(r2=<d), o ¥ = O(r=37d),

sidering vacuum space-times asymptotically flat at 9 ¥, = O(r2-¢
future nullinfinity 3~ ¢ In these investigations one wishes axi ©°7 %),
to set initial data which results in solutions possessing
such asymptotic flatness, Conditions on the initial
data necessary for asymptotic flatness are not known;
as a result, one simply looks for conditions on the
initial data sufficient to insure asymptotic flatness.

It will be shown in this paper that the conditions
usually assumed are much stronger than needed.

In this paper it will be shown that if we assume

where €, > 0, then

¥y = O(r~27¢),
¥, = 0(r=27¢y),
Wy = O(r~27¢),
¥, = 0(r2),
¥, = O(r1),

Expressed in terms of the components (¥, ¥,, ¥,, ¥,
¥,) of the Weyl tensor with respect to a null tetrad
(In, nt, me, me), the usual assumptions are

0 - ~6 g = -5
-a_’}’ \I’() e 0(1’ )) —a_;f_' \IIO - O(‘V )1

Ty = O(»~5),
where lp is chosen to be orthogonal to null hypersur-
faces, » is an affine parameter along null geodesics to
which !¢ is tangent, and the x? are coordinates5 that
label different null geodesics. The coordinates and
tetrad used are more completely defined in Sec. 3.
With these assumptions one can, in particular, estab-
lish the well-known “peeling” result

¥, = O(r48), A=0,...,4.

where €, > €; > €,. Thus under the weaker hypo-
thesis the “peeling” result is modified, but the space
is still asymptotically flat in the sense that all the
¥% go to zero as r—w,

Unfortunately it is not known whether the weakening
of the conditions is significant in the sense that it will
permit a wider class of space—times to be consider-
ed; there may not be any interesting asymptotically
flat solutions which violate the stronger conditions
but are permitted by the new, weaker ones. Penrose6
has given requirements sufficient for a solution to
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It will be shown in this paper that the conditions
usually assumed are much stronger than needed.
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where lp is chosen to be orthogonal to null hypersur-
faces, » is an affine parameter along null geodesics to
which !¢ is tangent, and the x? are coordinates5 that
label different null geodesics. The coordinates and
tetrad used are more completely defined in Sec. 3.
With these assumptions one can, in particular, estab-
lish the well-known “peeling” result

¥, = O(r48), A=0,...,4.

where €, > €; > €,. Thus under the weaker hypo-
thesis the “peeling” result is modified, but the space
is still asymptotically flat in the sense that all the
¥% go to zero as r—w,

Unfortunately it is not known whether the weakening
of the conditions is significant in the sense that it will
permit a wider class of space—times to be consider-
ed; there may not be any interesting asymptotically
flat solutions which violate the stronger conditions
but are permitted by the new, weaker ones. Penrose6
has given requirements sufficient for a solution to
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have the peeling property, and included in these is the
requirement that the space—~time be conformally com-
pactfiable. Any solution which is asymptotically flat
in our weakened sense but does not have the peeling
property must violate at least one of Penrose's re-~
quirements. Some indication of the possible signifi-
cance of the weakened conditions can be obtained by
considering the linearized theory. In that case it is
clear that asymptotic flatness at future null infinity
places a restriction on the variety of advanced (in-~
coming) radiation fields which are permitted. Re-
placing ¥, = O(»75) by ¥, = O(»727 o) permits a
wider class of advanced radiation fields (even among
those required to have a finite total energy).

2. TWO LEMMAS

In the proof of asymptotic flatness for ¥5 = O(r~27<y)
given in the next section, two results on the asympto-
tic behavior of solutions of systems of linear ordinary
differential equations are needed; these two results
will be stated here as Lemma 1 and Lemma 2. The
notation F(x) = O(g(x)) means that |F|/g is bounded
as x = @ and F(x) = o(g(x)) means that F/g has the
limit zero as x — o,

Lemma 1: Let the complex n X # matrix B and
the complex column vector f be given functions of x
where

B=0(1"¢) and f=O0Ox1"¢, €>0,
Let the # X » matrix A be independent of x and have
no eigenvalues with a positive real part. Suppose al-
so that any eigenvalue of A with vanishing real part
is regular (i.e., its multiplicity is equal to the number
of linearly independent eigenvectors corresponding to
it,) Then all of the solutions of

dy (A
Te <x +B>y+f

are bounded as x — 0,

A similar form of this lemma is proven by Newman
and Penrose.l

Lemma 2: I d2Y/dx2 = —QY, where

¥ 3’2) (0 ‘1’0>
Y={-" - and =\{=
(3’1 Yo ? ¥y 0
and if ¥, = O(»~27¢), € > 0, then there exists ¥ such
that

Y =Y0x + Olx)
and

2Y _ yo + 0(x~9),

ax

where Y0 is a constant,

Proof: The second-order matrix equation is equi-

valent to the equations d2y,/dx? = — ¥y, , d2y,/dx?
=—¥y,. Eweput y, = ¢ +id and ¥y = a + i,
the first equation is equivalent to d2¢/dx%? = — ac —

bd and d2d/dx2 = — bc + ad, Now, by putting dc/dx =
¢y and (d/dx) d = d,, this last pair of equations is
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equivalent to the first order system of equations

c 0100\ 1
ila 0000}/c
dy 0000/ \d,
00 00\ fc
+[{—e0~-801)c
00 0044
—~b0 a0/ \d

It follows,7 since f°°x [, (%) ldx > 0, that ¢ = o(x),

d = o(x), ¢y =o(l),and dy = 0(1). An identical argu-
ment with respect to the quantity y, allows us to con-
clude that ¥ = o(x) and dy/dx = o(1). Then d2Y/dx2 =
QY = o(x)0(x~2~€) = o(x~1~ <), which implies that
dY/dx = o(x™¢) + YO, where Y0 is a constant, If we
define ¥ = ¥ — xY0, then d¥ /dx = o(x~¢). Thus
d(¥x1)/dx = ~ (Y/x)/x + o(x”¥¢) and we can apply
Lemma 1 to each column of ¥/x to conclude that

¥/x = O(1), or that ¥ = O(x). Thus ¥ = ¥0x + O(x).8

3. ASYMPTOTIC FLATNESS

We use a null tetrad® of basis vectors (I, n,,m,, m,)
satisfying [ n# = —m mt =1, [ mt = n m¢ =0 The
vector l;1 is chosenas the gradient of nuli‘ hypersurfaces
labeled by the coordinate x0 = « so that ! L= Uy The
vectors n,,m,, and m, are parallelly propagated along
the geodesics to WhiC%l It is tangent. The coordinate
x1 is taken to be the affine parameter 7, along /¥, and
the coordinates x¢ label different null geodesics in
each null hypersurface. Our tetrad then has the form
¥ =0, n" =64 + Ush + X" anam" = wo| + 5},
The gravitational field is given by the tetrad compo-
nents of the Weyl tensor, ¥, = —C Irmyvleme, ¥,

Hvpa
— v o J—— i v —
= Cw,pcl#n lrmo, ¥, = C ool lemo, ¥, =
~ Cppom#n?lond,and ¥, =— C, minm Pn°, The

nonzero spin coefficients formed from the tetrad are
defined as

p= lp_.”mpmu’
a= %(lmunumv — my, M),
B = é(lwnu m’ —m,., mem),
T=0a+p,
v=-—mn,,mn,

= 3 ([, nbn —m, in?),
p=—n, mem’,

— v
o= lu:um“m ,

P TR
A= n”,_umilm .

Intrinsic derivatives with respect to the tetrad (I¥, n¥,
m#, m#) are denoted respectively by (D, A, 5, 5). The
equations that we will need are the vacuum field equa-
tions, the Bianchi identities, and certain equations that
arise from the existence of the tetrad. Of all these
equations, we need especially two classes: radial
equations, which are those that do not contain 4, and
nonradial equations, which are those containing A.

The radial field equations are

Dp = p2 + oo, (3.1a)
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Do = 2p0 + ¥, (3. 1b) op —80 =ap+ (B— 3a)o— V¥,
—3 = — O — ¥ + BB —
Da= pa + 0B, (3.1c) b ?B Lip M_’ 2af + oo+ — Ty,
oA —6p =Ty + (00— 3B — ¥y, (3.29)
D3 = o8 + + ¥ 3.1d Ti _ Fri 3 i 0 J
B=pB+ oo+ iy, (8.19) o8 — B = (B— )t + (@ PIE,
DX = px + Op, 3.1e) bw —0w =E@—a)w+(a—pRw+ u—p.
Dp=opp + ox + ¥y, (3. 11) Consider first Eqgs. (3. 1a) and (3. 1b). Putting
Dy=1a + 78+ ¥,, 3.1g) P_<p o> Q_<0 \p0>
-1 = ’ 1 = ’
- 0 f ¥, 0
Dy=7x +Tp + ¥g; (3. 1h)
we can write those two equations as
the radial Bianchi identities are
dP _ .
_ “s = +
DY, — §¥, = 4p¥, — da¥,, (3.1i) L e
DV, — 8%, = 3p¥, — 20, — ¥, (3.1j) K Y satisfies
DY, — 0%, = 2p¥, — 207, (3.1k) ? - — PY, (3.3)
_ y
DU, — 5%, = p¥, + 2a¥, — 3AT,; @.1)  jpen
2y
the radial equations satisfied by the tetrad are 37 =—QY, (3.4)
i — P+ -,
DEt = p&t + ok, (3. 1m) and, by solving Eq. (3. 3) for P,
Dw =pwtod—r, (3.1n) dy
_ ) Pp=——1Y! (3.5)
DXi =T+ 78, (3.10) ar
DU =7Fw+ 16— (y +7); 3. 1p) satisfies dP/dr = P2 + @ if Y is nonsingular. But

The nonradial field equations are
AN — v =2av+ (y—3y— p — pA — ¥y, (3.2a)
bV —Au=yu—2v8 +yu + 2 + A3, (3.2b)
by —AB=Tp—ov+ (u—y t¥)B+Xa, (3.2¢)
67— Ao =278+ (y + u — 3y)o + Xp, (3.24)
Ap—br=(y+y—[Fp—2ar—ro—¥,, (3.2e)

Ad — Oy =pr—TA—=AB + (y—y— Da — T,;
(3. 2f)
the nonradial Bianchi identities are

AV, — 0¥, = 4V, — p¥, — 47¥; — 26, + 30¥,,

(3. 2g)

ATy — 8Y, = v¥, + 2% —2u¥, —37¥, + 20¥,,
(3.2h)

AT, — 605 =20V — 3uv, — 278, + 2BV, + 0¥,
(3. 21)

AV, — oV, = 3vT¥, — 29V, — 4V, — 70, + 487 ,;
(3.2j)

the nonradial equations satisfied by the tetrad are

0Xi— AP = (u+y —y)Ei + XE, (3. 2K)
U—Aw=(p+y—ylw+X&— 7, (3.21)

The remainder of the equations are

we assume that
¥, = O(r~2-¢g) (3.6)

so that Lemma 2 is applicable to Eq. (3. 4), and we
can conclude that there exists a ¥ such that

Y = Y0r + O(r),

Y _ yo + (<o),

o (3. 7a)

I we now consider ¥ = 7k (¥ — Y97) we see that

L p_k7 s opre) (3.8)
dr 7
and Lemma 1 is applicable if 2 =0 and 2 — ¢, < — 1.
This allows us to conclude, setting 2 =—1 + cp,that
Y =Y0r + O(ri-¢,) (3.70)

where €, < €, and €, = 1. Substituting Egs. (3.7) into
Eq. (3. 5), we obtain

p=—7"1+0(r17%), o=0p"1"%), (3.9

It follows immediately from Egs. (3. 1a), (3. 1b), and
(3.9) that

Dp =72+ O(y—z_ep),
Do = O(r~2-¢).

The asymptotic behavior of 3p/dx? and do/0xi is
found by differentiating Egs. (3. 1a), (3. 1b) with re-
spect to xi, The resulting equations may be put into
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a form where Lemma 1 is applicable to the column
vector
<71+ep _QB ylte E’_ ’71+ep ﬁ)

dxi’ dxt Axi

withA=(—1+ eP)I. We have then

9p ¢

dxt’ 9x
The asymptotic forms for p and ¢ given by Eq.(3. 9)
and the assumed form for ¥,, D¥,,and (3/0x%) ¥,
allow the radial equations for {¢, a, 8, w,and ¥, to be
written in such a way that Lemma 1 is applicable to
the column vector (v§ Lyt ra,ra, vp, 78, w, ®, ¥2+€)
¥y, 72+<1 &) with

= O(r~17¢),

0... . . . ... : 0
A=

0. .. : : 0

0000 0—1—-1 0—1 0 0 0

0000—1 0 0—1 0—1 O 0

0. 0—2+¢ O

0. 0 0 —2+

where €; = 2 and €; < €;,. Then we conclude

gi’ a,p= O(’r-l )’
w= 0(1),
¥y = O(r=2-¢,),
It then follows from Eq. (3. 1) that
D&, Da, DB = O(r~2),
Dw = O(r71),
D¥, = O(r=3=<1),

After differentiation of Egs. (3. 1c), (3. 1d), (3. 1i),
(3. 1m), and (3. 1n) with respect to x%, we can apply
Lemma 1 and show that

8 ,, @ B _ s
o P @ e T O
dw _
’a_x—i - 0(1)’
W1 _ op2-ey),

duxt

The resuits established thus far allow Egs. (3. le),
(3. 1f), and (3. 1j) to be written in such a way that
Lemma 1 is applicable to the column vector (», 7y,
r2+ez ¥,) with

A=

[~ =N )
(=N = =]
[N ]

€, —1
where €, < €; and €, =1, Then we conclude that

Hy A = 0(7_1)1
¥, = O(r2~€2),
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Equations (3. 1e), (3. 1f), and (3. 1j) then show that

Dy, Dx = O(r~2),
DY, = O(r=3-¢),

Again we can apply Lemma 1 to the equations re-
sulting from taking 8/2x* of Egs. (3. 1e), (3. 1f), and
(3. 1j) and show that

W A pon
axi’ dxi 0™,
v,
Z = 0(r2-e),
oxt

We next apply Lemma 1 to each of the remaining
radial equations individually and find

v

Vs, a_x? = O(r-2),
v,
‘1’4,‘6_;{ = 0(7'_1),
v, v, XJ, a%/_i , fﬁ, g‘g = 0(1),
U,%% = 0(1*8), 6> 0,
D¥, = O(r~3),
DY, = O(r™2),
Dy, Dy, DX = O(r~1), DU = O(1).

In order to establish that every solution of the field
equations that satisfies ¥, 8%,/9x% = O(r72~ ¢0) and
D¥, = O(r~3~ <) has an asymptotic form at least as
strong as that established by applying Lemma 1 to
the radial equations, it is necessary to show that the
time derivative (9/0u) of all the quantities also has
such an asymptotic form. To show this, it is neces-
sary to integrate the radial equations for some quan-
tities and obtain explicit » dependence for their lead-
ing orders. We give the results for all the explicit »
dependence we can obtain without further specifying
the assumptions on ¥:

£ = (§10/7) + 001 ),
a=(a0/7) + O(r17%),
B=(BO/7) + O(r~1=%) + O(r 17 <),
w=— 0 + 0(rg) + 0=,
y=v% — [(7%0 + 7080)/7]
+ O(r1-<2) + 00 1-¢),
A= Q0/7) + O(r~1- %),
= (u0/7) + O(r~1~<2),
Ty= (¥9/72) + O(r2- <)
v=v0 — [(T0X0 + 7040 + ¥9) /7]
+ O(r17%) + O(r-1-<y),
Xi = Xi0 _[(TOEiO + 70£i0)/7]
+ O(r1-%) + O(r~174),
¥, = @/7) + 0r5),
U=UC —(° +30)r + O(r~%) + Olr~<2),

(3.10a)
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where 7—3, (£10, 0, PO, etc.) = 0. Note that the use of

70 = @0 + B0 and of 7, w,and y as given by Eq.(3.10)
has enabled us by integration of Eq. (3. 1p) to find that
U falls off faster than the asymptotic form for U
found by application of Lemma 1 to Eq. (3. 1p). We
still have

¥, = O(r™27 <o),

¥y = 0(r 27 ),

¥, = 0(r27¢2),
p=—r"1+00"1"%),

(3.10b)

0= 0(r1-¢),

The requirement that Egs. (3. 2’) hold asymptotically
merely imposes some relationships among the func-
tions independent of # that occur in Eq. (3.10), We
consider these relations to hold but do not display
them. Equations (3.2’) have also been used in estab-
lishing w and U as given by Eqgs. (3. 10); from the radi-

al equations alone one can establish only that w =
— 70 + O(r~<uw), €,< €, €, < €,and U= U0 —(y0+
yO)r + O(r~<w) + O(r~¢z).

We substitute A =3/9u + UD + X¢ 3/0x¢ into Eqs.

(3. 2) and solve for the time-differentiated quantities
that occur. This results in expressions for the time-
differentiated quantities in terms of quantities whose
asymptotic behavior is given by Egs. (3. 10). We find
then that the asymptotic dependence of (¥;, ¥y, ¥,,
Vs, A, 1, B,0,0, @, £, w) is the same as that of (g, ¥y,
Vo, Vs, A, 1, B, 9,p, @, £%, w). The quantities (¥,,0,X¢,

f/, -}) are found to have the same asymptotic form as
(¥,, U, Xi v, y) by differentiation of Egs. (3. 1p), (3. 1o),
(3.11), (3. 1h), and (3. 1g) with respect to u and apply-
ing Lemma 1. This establishes that the asymptotic
orders for the tetrad, spin coefficients, and tetrad
components of the Weyl tensor are those given by

Eq. (3.10).
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In nonrelativistic potential theory there can exist singularities of the § matrix which are associated with wave-
functions belonging to a non-L2 class. In this paper the non-L?2 character of these singularities is shown to
persist in several relativistic models: in (1) two schemes, including that of the Klein—-Gordon equation and the
coupling of a classical relativistic field to an external exponential source, in (2) the pair theory, classical and
quantized, with separable interactions,and in (3) the Lee model. For (2) and (3), poles of the “proper” Jost
function f_(k,0),i.e.,the Fredholm determinant for the outgoing scattering state, correspond to non-L2 class
solutions of the associated dynamical field equation in coordinate space. These non-L2 solutions will be called
“shadow” fields. They are of special importance and bear the same relation as the “shadow” states in potential
theory because they also are of dynamical origin and do not appear in the completeness or unitarity relations

by virtue of their non-L2 status.

1. INTRODUCTION

Recently, in nonrelativistic potential theory, it was
shown that there can exist singularities of the S mat-
rix which are associated with wavefunctions belonging
to a non-L2 class.! To be precise, for S identified
from the Jost functions,
s(k) =f—(k1 O)/f+(k’0), (1' 1)
any singularities of the Jost function f_(¥, 0) corres-
pond to a non-L2 class of solutions of the Schrédinger
equation, unlike the zeros of f,(k, 0) which correspond
to the L2 class, i.e., genuine bound states. Such non-
L2 states (often referred to as “shadow” states for
this reason) appear in the same part of the physical
k plane as the bound state poles and are “dynamical”
in that their analytic properties, such as position and

discontinuities, are a function of the potential. That
there does exist such a well-defined non-L2 class of
solutions associated with some singularities of the S
matrix was proven by construction of the full Green's
function for the Schrddinger equation with the boun-
dary conditions of regularity at the origin and spheri-
cal outgoing waves at large distance.l From it, first,
the completeness statement was derived which deter-
mines the complete set of L2 class of solutions. Then,
from the usual operator relation between the T mat-
rix and the full Green's function, the S matrix was con-
structed explicitly and seen to contain additional singu-
larities. Hence, their associated wavefunctions belong
to a non-L2 class.1

Historically, almost a quarter of a century ago, Ma2:3
discovered an example of such singularities in the
particular case on an exponential potential. The
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1. INTRODUCTION

Recently, in nonrelativistic potential theory, it was
shown that there can exist singularities of the S mat-
rix which are associated with wavefunctions belonging
to a non-L2 class.! To be precise, for S identified
from the Jost functions,
s(k) =f—(k1 O)/f+(k’0), (1' 1)
any singularities of the Jost function f_(¥, 0) corres-
pond to a non-L2 class of solutions of the Schrédinger
equation, unlike the zeros of f,(k, 0) which correspond
to the L2 class, i.e., genuine bound states. Such non-
L2 states (often referred to as “shadow” states for
this reason) appear in the same part of the physical
k plane as the bound state poles and are “dynamical”
in that their analytic properties, such as position and

discontinuities, are a function of the potential. That
there does exist such a well-defined non-L2 class of
solutions associated with some singularities of the S
matrix was proven by construction of the full Green's
function for the Schrddinger equation with the boun-
dary conditions of regularity at the origin and spheri-
cal outgoing waves at large distance.l From it, first,
the completeness statement was derived which deter-
mines the complete set of L2 class of solutions. Then,
from the usual operator relation between the T mat-
rix and the full Green's function, the S matrix was con-
structed explicitly and seen to contain additional singu-
larities. Hence, their associated wavefunctions belong
to a non-L2 class.1

Historically, almost a quarter of a century ago, Ma2:3
discovered an example of such singularities in the
particular case on an exponential potential. The
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essential non-L2 character of such singularities was
not recognized until very recently.l Ma showed that
for this potential in the s wave S matrix there exist
poles that do not contribute to the completeness. Be-
cause such poles exist in this and other potentials,
Sudarshan quite recently has stressed their impor-
tance with regard to the concept of “shadow” states.
These non-L2 singularities, indeed, are of intrinsic
interest as “shadow” states, first, because of their
dynamical ovigin and, second, because by virtue of
their non-L2 status they possess a very elegant rea-
son for not appearing in the completeness statement
and hence the unitarity velation. Their lack of appear-
ance in the unitarity relation in contrast to other
approaches is not due to energy conservation® nor to
the introduction of standing waves.® They do not lead,
in the theories studied so far, to any complicated ana-
lytic properties or violations of causality.

From recent history of particle physics it will be re-
called that Regge poles also originated through work
in potential theory. Since that time they have been in-
vestigated and proven useful both formally and pheno-
menologically on more interesting and complex theo-
retical levels. The question if in a similar way these
non-L2 singularities would appear in domains closer
to that of a true interacting quantum field theory be-
comes of considerable interest. In particular, as with
Regge poles, the investigation of these non-L?2 class
of solutions when the theory is relativized,i.e., in re-
lativistic wave equations, becomes of a similar im-
portance. Then, as a preface to consideration of these
singularities in a nonperturbative quantum field
theory model, we consider their behavior in a separ-
able model, which also shows the effects of nonlocality
on their properties. In this case, the criteria for the
occurance of a non-L2 singularity is the vanishing of
a “proper” Jost function which is the same as the
Fredholm determinant. This also enables us to intro-
duce some definitions and notations? regarding Jost
solutions which we shall use repeatedly in the re-
mainder of the paper. These matters are dealt with in
Secs. 2 and 3. While the separable model can be quan-
tized to give a soluble quantum field theory with pair-
wise interactions in which the non-L2 singularities
persist in the S matrix, we prefer to consider them
instead in Sec. 4 in the Lee model. For both this field
theoretic model and the pairwise theory, classical or
quantized, the non-L2 character of the wavefunctions
associated with these singularities can be demon-
strated by general arguments, For each of the various
models considered in this paper, we construct specific
examples of non-L2 singularities and show that, as in
nonrelativistic potential theory, they correspond to
the vanishing of a Wronskian. Thus, the non-L2 singu-
larities are associated with a breakdown of the linear
independence of the two basic solutions employed in
construction of the S matrix. By analogy with the non-
relativistic results, we call these “shadow” fields.
The last section contains some concluding remarks.

2. EXACT SOLUTIONS OF SCALAR AND VECTOR
COUPLING MODELS

We consider the effects of relativity on these non-L2
singularities in two different schemes for the coupling
of a classical field to an external exponential source,
These particular relativistic models were employed
previously by Guralnik and Hagen8 to determine the
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properties of Regge-poles for the 1/7 type of source.
With the same spirit, we approach them here from the
viewpoint of the results we found for the exponential
potential in the nonrelativistic case. In the case of the
vector coupling model, in the fixed source limit the
wave equation is that for the coupling of a Klein-Gor-
don field to a e™*/» type source. In both these cases,
we find that the non-L2 character of these singula-
rities persist and are the same as in the Schrodinger
theory, except for the obvious change in kinematics.

A. The Scalar Coupling Model
The scalar model is defined by the Lagrangian

L=[dr2

=f dx{er*d, @ — Z[m + x(0)]2¢e*

+ 3o, +c.c.}, 2.1)

where the metric is (+,+, +,~). This gives the wave
equation
{=02+[m + x(0)]2tox) =0 . 2)

or, for x(x) spherically symmetric, the radial equation

E2 — 2
“om oW
p,2 W+1) 1

It is useful to compare this equation (2. 3) with the
usual Schrédinger equation for coupling to a spheri-
cally symmetric source

P2 W+
2m 2mr2

ENR w(x) = ( + X(?C))W(X), (2- 4)

where E ., = k2/2m. Notice that (E2 — m2)/2m of
(2. 3) corresponds to the nonrelativistic energy vari-

able E .. The physical sheet is defined by
Im [(Eév— m2)1/2]> 0.

It is useful both here and in our subsequent discussion
to employ the s wave Jost solutions f (%, ) of Eq.
(2. 4).7 When f1(k, 7) are evaluated at » = 0, they are
called the Jost functions f,(%,0). If f.(k, ) exist such
that
lim eFikrf (k,7) =1
P00
and are linearly independent of each other,then the
most general regular solution of (2. 4) can be con-
structed as

@(k,7) = (1/2iR)[ f-(k, 0)f 1(k, 7) — f (R, 0)f-(k, 7)],(2. 6)

such that for » > 0, ¢(k,7) = 0,and ¢'(k,») > 1
(prime means differentiation with respect to 7). It
should be noted that the Wronskian of the Jost solu-
tions fi(k, ) is

W(fi, f-) =— 2k
(W{q, Vo) = Y1¥g’ — ¥4 '¥y]. The full Green's func-

tion §(+) associated with (2. 4) that satisfies the boun-
dary conditions of regularity at the origin and spheri-

(2.5)

2.7
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cal waves at infinity can also be constructed from
F4l(k, 7). Thenvia T =V + VG(MV, the corresponding
T matrix, and hence the S matrix, as given by (1. 1)
can be constructed.

For

X(x) _—— voe-r/a (2. 8)
both (2. 3) and (2. 4) are soluble exactly for s waves.
Substitution of z = e~ into (2. 3) yields a form of
Whittaker's equation. The unique solutions satisfying
(2.5) exist and are

fill,7) = z(y-l)/ze—az/zyl(a, v; dz)
= 20 V/2¢42/20(a, y; dz), (2. 92)
flly7) = f =k, 7)

=z0"D/2g-d2/2y (a,y;dz)
=2 N2¢-a2/29(q — 4 + 1,2 — y;dz), (2.9D)

where the second lines give the standard definitions?
of y, and y, in terms of the confluent hypergeometric
function of the first kind,®. For the scalar coupling
model,

a:%—-a(m + ik),
v =1—i2ak,

d = 2avy, (2.10)
where both o and y are simple linear functions of %.
Then

S(k) = f~(%,0)/f (¥, 0)

=®(a—y+ 1,2—y;d)/P(a,y;d) (2.11)
and the bound states correspond to the zeros of

f4(k,0),i.e.,

®la,y;d) = 0. (2.12)

Since, for fixed z/, ®(a’,y’,2’) is an entire function
of o’ and a meromorphic function of y’ with simple
polesaty’' =0, — 1, -+ f (k,0) has poles at

'y:fl'*‘l
or
2iak = — n,

n integer (# 0), (2.13)

which are identical with the positions of the non-L2
singularities in the nonrelativistic case for the expo-
nential potential!

Since y,/T(2 — y) tends to a finite limit at y = 2,+- -,
but then is simply a multiple of y, there, the Jost
functions f,(k, ») are not linearly independent at
values of & given by (2. 13). However, the regular
solution ¢(k, 7) defined by (2. 6) and (2. 9) can be com-
puted for these values. As y5 and y, provide a funda-
mental system of solutions under all circumstances,
we shall express ¢(k, ») in terms of them in order to
study its behavior. Using

T :L)a gimacy . + g(a) ein(a—y)ey,“
N T2 —~1y) T{2—19)
(a-y)ef{— rd Y
ez'na)'E( 1_'(1_0153)5+1_,((_/‘!__’}/_*_1)3)7,
(2.14)

it

Y1

I

Yz

SOLUTIONS 75

where € = sgn(Im z) = + 1 as Im z = 0, we obtain

o(k, 7) = N(2)(y — 1) eintr-oy (d)y,(dz) — v, (d)y5(dz)]

with {2.15)

N(2) = 20-1/2 g-d(1+2)/2 /2,

Computing ¢(k, 7) for k = in/2a, we see that for all o

-d/2
lim @(k,v) =— em’/za[e ¥(a,n + 1;d):| , (2.16)
r=—r00 2ikdr

where ¥ is the confluent hypergeometric function of
the second kind. Thus, these, too, are non-L2 singu-
larities!

As a check we compute the nonrelativistic limit of
Sk, 7), as given by Eq. (2.92),as m > ©,s0 ¢ > —
am. We use Tricomi's expansionl?

7o) i’z
?(a,7;9) = T ay)In/2ex? Z(‘) Aj@)
j:

X J s [2v~ay] (2.17)
with
AO‘:]" A1=_7/2, A2=‘)’(‘)/+1)/Z,
and
G+ l)Aj+1 = %'}’Aj + %(’)’ +7j— 1)Aj_1 - %aAj—Z,

and assume it is an asymptotic expansion in m, We
obtain as a - — am, m large,

F+ll,7) = cd ;g 4(2aV2mugy e7/20), (2.18)

with ¢ independent of », This is the same as in the
Schrddinger theory.?!
B. The Vector Coupling Model

This model has been of special interest because of its
application in quantum electrodynamics. It is defined
by the Lagrangian density

L) = — " 3,0 — tmZp*o — 20k *
+ z'(pul*%pAp +c.c.  (2.19)

In the fixed source limit A = 0, A9 = x(r), this leads
to the wave equation

E2—m
@lx)
2m )
_b,z l(l+1)__1_ \ E }
= [E-W- o o [x0)2 + = X0 q()ég.c)z,())
For
x(x) = — vye e, 2. 21)

this equation (2, 20) is exactly soluble for s waves and
in fact, by the substitution of z = ¢*", yields again a
form of Whittaker's equation. For the vector coupling
model all the relativistic results for the previous
model then follow but with

a,=3— ialE — k),
Yy = 1— i2ak,
d, =— i2av, (2.22)
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Notice that the positions in the % plane of the non-L 2
singularities are unaltered. In the nonrelativistic
limit, i.e.,m — ®©,now a, - — iam which yields again
the corresponding Schrddinger result, Eq. (2. 18).

We have also examined the case of the coupling of a
spin — } field to an e /% type source. As above, for s
wave scattermg the Dirac equation is exactly soluble
in terms of confluent hypergeometric functions when
j =— %. This value is unphysical, and so we do not
discuss it any further here.

3. PROPER JOST FUNCTIONS, COMPLETENESS
CONDITION, AND S MATRIX FOR SEPARABLE
INTERACTIONS

The effects of nonlocality on these “non-LZ2 singula-
rities” of the S matrix can be studied with an exter~
nal potential of the separable type. Although this
separable theory can be quantized to give a soluble
quantum field theory with pairwise interactions, we
do not “dress it up” but instead treat it here on the
classical level where it can be clearly shown that it
is the vanishing of the proper Jost function f_(%,0) =
C(k)f -(k,0) where C(k) is real, rather than f_(k, 0),
which is the correct criteria for the existence of
non-L2 states. The proper Jost function is the same
as the Fredholm determinant of the kernel of the
corresponding Lippmann—-Schwinger equation for the
outgoing scattering state. Notice that C(k) =1 for a
local central potential.11l.7 For simplicity, we discuss
the s-wave case only and a discussion of the higher
angular momentum is straightforward and leads to
similar conclusions.

For a separable interaction the Hamiltonian is de-
fined by

=1 [adp? + (V)2 + m2e2
—p@om [ dx'pE)ex’)]

where X is real and p(x) spherically symmetric. In
the quantized version p describes the nucleon density
and we could set the nucleon energies equal to zero
since this is a static theory. This Hamiltonian leads
to the wave equation &2 = E2 — m?2)

(3.1)

K20(®) = —V2p(x) — [ dx'p@pE)ex).  (3.2)
It follows that the Wronskian
W(f (b, 7), - (R, 7)), -0
= W(f (B 7), (R, 7))y 0o =— 2ik  (3.3)
and
W(f+(ks 7);f—(k, 7’)) = O, (3' 4)

for all 7, must hold so that f,(k, ») and f_(k, 7) are
linearly independent for any ». In momentum space
for the outgoing scattering state, the corresponding
wave equation is

1 2

v®k;p) =6k —p)— fdp, B2 —~p2 + 4e 7

x p(Po(p' WMk, p’), (3.5)

where
p(p) =7= f dx ¢’P*x p(x)

and p(x) = p(lxl), i.e., s wave interaction. The solu-
tion is

(3.6)
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_p(E)p(2) 6.1

Ok p) =
VR = o —p) — o B E

where
D, (k) =

+ 22 p(p)?

. e s S (3.8)
is the Fredholm determinant. There can be at most
one bound state, Y (")(p), and if it exists, its charac-
terization is given by D(k = iK,) = 0 for K, > 0,
where D() is the analytic continuation of D (k) from
k + {e into theUHP.

The completeness of ¢(Y)(k;p) and ¢ ™)(p) is arrived
at by a suitable contour integration in the UHP.7.12
This 'also determines the complete set of the 1.2
class of solutions of Eq. (3. 2).13 From (3.7) it is
seen that only the zeros of D, (k) contribute to the
completeness of the L2 class of solutions of Eq. (3. 2).
Notice from (3. 8) that D(%) has no complex zeros in
the 2 UHP.12

The S matrix for the outgoing scattering states is
[ dpy Ok, p)*w M, p) = D_(2)/D., (%),

where ¥ <)k, p) is the ingoing scattering solution of
{3.3) and D_{(k) = D(k — i¢). Notice that D_(k) appears
directly in S(k). Thus, by the preceeding discussion
the eigenfunctions associated with the singularities of
D_(%) in S(k) do not appear in the completeness state~
ment and hence by exclusion do not belong to the L2
class of solutions of (3. 2).

S(k) = 3.9)

As for a central local potential, the Jost function
f4(k,0) can be defined either by

' k 1
d/l(jo)(k; 7") ly:O :—Kk’—o-j (p(k; 7’) ]r-‘»o

k
= 7. 0p

where d/(”(k r) is the s-wave Fourier transform of
vHk; p) and ¢(k; r) the regular solution of (3. 2),or
directly by evaluation at » = 0 of f (k, 7) as deter-
mined by its integral equation.14 Primes here denote
differentiation. The result is the same:

(3.10)

F1(k,0) = fi(k,0)/C(k) (3.11)
with
M
Fok,0)=1+22 f dp—kz—f%;—— 3. 12a)
cy=1+20 [ ap "(1”)1) + 4map(k)
xfo dr v p(r) coskr, (3.12b)

where f,(k,0) are called “proper Jost functions” and
C (k) is real. Notice that only the proper solutions
contribute to the full Green's function associated with
the s wave radial equation for (3. 2) which satisfies

<__8_2_ — k2 — 49 f ar'rr p(r)p(‘r'))g(*)(k r,r')

ar ~lsr—») (3.13)

with the boundary conditions that it is regular at » =0
and contains only outgoing waves for » — ©, Expli-
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citly in terms of the proper solutions, it is

_ 1
f+(k5 0)

+ T4k, 7)ok, V(e — 7)),

SRy 7, 7v') = [}+(k’ ok, r' I lr — ')

(3. 14)

where n,(r — 7’) = 1 for » > 7/, and is zero otherwise.
Hence, by derivations of the type for the local poten-
tial only the proper Jost solutions contribute to the
completeness statement and S matrix.15

It is useful to construct specific examples displaying
the non-L2 character of the wavefunctions associated
with the singularities of f_(k, 0). We construct two
examples, one where the S matrix has a non-L?2 pole
of order two and, for the other, a simple non-L2 pole.

A. Non-L2 Pole of Order Two
Here

p(k) = b2/(1 + K2b2), (3. 15)

and so p(») = e”/?/r which has the characteristic ex-
ponential tail at large distances. Then,

- 2763\ . 472b3 I
= LHAY Neikr — 202 (1 kble-7/b
Jom (1 T k2b2>e T e (3).e1e)
}—(k) 7) =.?+(—_ k; 'V),
and _ _
S(k) = f-(k,0)/f (%, 0),
where
Fi(k,0) = [(1 — ikb)2 — 27Ab3]/(1 — ikb)2
- 1—mb3 as kb >,
F-(,0) = [(1 + ikb)2 — 2mAB3]/(1 + ikb)2
S VP VIR (3.17)
(1 + ikb)2

so that the proper Jost function f_(k, 0) has a pole of
order two. Defining f_(k,7) = (1 + ikb)f_(k,7),
f+(k,7) = f_(— R, 7) to be the solutions so that the
divergent factor is removed from the f_(k, ») Jost
solution, we have that the Wronskian of the two basic
solutions is

W(F 4 (k,7), F-(k, 7))
47Ab2

=—2(1 + k2b2)<k——é-(’35— er/b sinkr) (3. 18)
with
C(k) =1 + 2m\b3/(1 + k2b2),

It is equal at » = 0 and » = ©, and vanishes for all »
for kb = i. Thus, the starting solutions (3. 16) for
constructing the S matrix where f.(k,7) and f_(k, )
are assumed to be linearly independent are not so at
kb = i, If one tries to solve the differential equation
(3.2) at b = { for the regular solution ¢(k, 7), it is
found that ¢(k = ib~1, 7) does not exist and, hence, is
not of the L2 class of solutions. For instance, the in-~
tegral equation

_ sinkr _ 4m)
ok, 7) = 5 kB

Lf dr' v'p(r’) sink(r — v')z(k)
(3.19)
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with
00
2®) = [ dr" r"o" ok, 7") (3. 20)
leads to
ok, 7) = — 3b(e"/b — e7/b)
+ 2mab z(B)[(r + 3b)e /b — fber/b].  (3.21)

That z(k) is undefined for kb = i can be seen by the
use of (3.21) in (3. 20).

B. Simple Non-L2 Pole

Here

p(k) =[ c2/(1 + k2c2)|1/2 (3. 22)
so that
P =22 5:(7) 8.29)

which has an exponential tail as » — © and a logrith-
mic singularity as » — 0. Hence, from (3. 12b) we see
that C (k) is divergent for all 2, However, f,(k, 0) are
still defined and

(B, 0) = [(1 — dkc) — 4mrc]/(1 — ikc) (3. 24)
so that
S (k) = {(1 — ikc)[(1 — ikc) — 4mxc]}/
{Q + ike)| (A + dkc) — 4m]f.  (3.25)

A pole of f_(k,0) is found at k¢ = i. Again from the
differential equation (3. 2) for (3. 23), ¢(k = ic™1, )
does not exist and thus belongs to the non-L2 class
of solutions.

4, THE N¢ SECTOR OF THE LEE MODEL

The completeness statement and S matrix for this
quantum field theory model are derived from the
“state functions” by essentially identical arguments
to those used in the preceding section for the pair-
wise theory.12 Hence, the singularities of 7_(k,0) =
D-(w(k)) are associated with non-L?2 solutions of the
corresponding wave equation in coordinate space, that
is, the dynamical equation analogous to the Schri-
dinger equation in nonrelativistic potential theory.
We construct here a specific example of this.

The Hamiltonian for the Lee modell6 is (E, = 0,
which is all right for a static theory)

H=moV'V + [ w@at@ala)da + [ f@N1Va'(@)da
+ [ ff@ViNa@dq (4.1)

with [N,Nt] = [V, V1] =1, [al@)a’(@)] = 6(q —q'),and

all others zero. f(@) = f(|ql) and so we have only s

wave interactions. Applying the Hamiltonian to the
master state

19, = 0,1 V) + [ da’e,@)IN,q")

with |V) = V1|0), |[N,q’) = Nta%(q’)|0}, we obtain
the physical outgoing wave no scattering state with
energy A = w(k),

i
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Vi =
N PR k) (@)
D (k) [wk) — w(g) + ie]
(4. 2)
with
e )12
R A &) e

where M is the physical mass of the stable V particle.
The S matrix determined by taking the inner product
of wﬁ);) with the corresponding ingoing wave state of
energy wk) is

S(k) = {in,k|out, k)

= D_(w(k))/D 4 (wK)). (4.4)

Briefly then, we now take nonrelativistic kinematics,
w(k) = k2, and choose a particular f (k):
21 b2 \2
2= By — o))
)12 = 2 1 — )]

Thus D(z), S(¥), and the continuum components of d/f‘,*(')k)

A. K. RAJAGOPAL

are essentially the same as the corresponding quan-
tities in first example we considered in the pairwise
theory. Thus, the Fourier transform of /¢ (L) into
coordinate space becomes non-L2 as kb — 7, in the
same way as in the previous example.

5. CONCLUSIONS

The analysis presented in this paper concerning the
singularities of the S matrix demonstrates that the
non-L2 character of the poles of f_(k, 0) persists in
domains closer to that of an interacting quantum field
theory. From the scalar and vector coupling models
it is seen that relativization does not destroy the non-
L2 poles of the exponential potential, For the pair
theory, classical and quantized, and for the Lee model
it is now possible to make the definite statement that
poles of the proper Jost function f_(k, 0) correspond
to non-L2 class solutions of the associated dynamical
field equation in coordinate space and that zeros of
f+(%, 0) to the L2 class of solutions. A corollary of
these conclusions is that non-L2 states, as “shadow”
states, possess inherently a very elegant reason for
not appearing in the unitarity relation, and may be
called “shadow” fields in complete correspondence
with its nonrelativistic counterpart.
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A new method of treating radiation problems in a uniformly moving, homogeneous medium is presented. A
certain transformation technique in connection with the four-dimensional Green's function method makes it
possible to elaborate the Green's functions of the governing differential equations in the rest system of the
medium, whereas the final integrals determining the field may be calculated in the rest system of the source.

I. INTRODUCTION

In recent years several papers have been concerned
with electromagnetic radiation in a uniformly moving
medium with a more or less complicated structure.
The usual approach is to formulate the governing
differential equation in the observer system (rest
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system of the source) K and then evaluate the solution
for this equation.1~11

In two articles12)13 the author showed that advantage
may be derived from the fact that the governing
differential equationsare simplestinthe rest frame

K’ of the medium, the medium being simple (i.e.,
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certain transformation technique in connection with the four-dimensional Green's function method makes it
possible to elaborate the Green's functions of the governing differential equations in the rest system of the
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I. INTRODUCTION

In recent years several papers have been concerned
with electromagnetic radiation in a uniformly moving
medium with a more or less complicated structure.
The usual approach is to formulate the governing
differential equation in the observer system (rest
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system of the source) K and then evaluate the solution
for this equation.1~11

In two articles12)13 the author showed that advantage
may be derived from the fact that the governing
differential equationsare simplestinthe rest frame

K’ of the medium, the medium being simple (i.e.,
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homogeneous, isotropic, lossless and non dispersive)
and conducting (but otherwise simple), respectively.

It is the purpose of the present paper to show that a
certain transformation technique in connection with
the four-dimensional Green's function method makes
it possible to derive advantage from both the “sim-
plicity” of the governing differential equation in K’
and the “simplicity” of the source distribution in K;
the structure of the medium may be rather compli-
cated.

The basic idea of the method can be described in this
way: The first step in the Green's function technique
is to find a fundamental solution corresponding to a
source which is represented by a four-dimensional
& function. Such a space-time impulse is bound to
a single space-~time point (world point). As far as
we are concerned with a single world point,all in-
ertial systems are equally suitable, and therefore,
in the first step,the rest system of the medium
should be used because the governing differential
equations are simplest in this system.

The next step consists of a summation over the world
points of the source distribution. This step is in
principle independent of the first one,and, therefore,
the most convenient inertial system should be used
for the second step. Usually,the rest system of the
source (if such a system exists, of course) is the
most suitable one for the summation procedure.

Mathematically, the formalism provides the definition
of a Green's tensor function which can be evaluated
in an arbitrary inertial frame. (In K’ this function
may even be well known from the corresponding
radiation problem,where the medium is at rest re-
latively to the source). This Green's function can be
transformed to another arbitrary inertial frame (e.g.,
the rest frame K of the source), where the final in-
tegrals which represent the field may be worked out.

The general formalism is elaborated for a homogen-
eous medium and then applied to some examples:

An isotropic medium and a lossless, electrically,
uniaxially, anisotropic medium are considered. The
first case has been treated before by Besieris and
Compton,? Chen and Yen, 19 and the author,13 the
second case by S.W. Lee and Lo.6 Case one includes
a simple medium (Refs.1,5,8,12). Application of the
method will also be made to a dispersive but other-
wise simple medium (ionized gas),a case which has
been treated before by K.S.H. Lee and Papas.4

II. FORMAL SOLUTION IN THE REST SYSTEM
OF THE MEDIUM

In this section all quantities refer to the system of
inertia K’ in which the medium is at rest. The trans-
formation of the results into four-dimensional tensor
language will be done in the next section. In prepara-
tion for this transformation we will use three-dimen-
sional, Cartesian tensor notation (cf.Ref.14) in this
section. Latin subscripts run from 1 to 4; Greek sub-
scripts run from 1 to 3. The coordinate x, = icf,

where ¢ is the time and ¢ the speed of light in vacuum.

Repeated subscripts obey the summation convention,
and commas in subscripts denote partial differentia-
tion with respect to coordinates.

The constitutive equations are given by

D! =€, E/, (1a)
B! = pu Hi, (1b)
I =0, E|, (1)

where the dyadics €,,, 4., and o, are assumed to be
independent of the space-time coordlnates x) (i.e.,
the medium is homogeneous). ¢ 0’ denotes the free
current density, whereas the free charge density

p0’ is assumed to be vanishing.

A vector potential A] and a scalar potential A} =
(i/c)®’ can be introduced in the usual way. The field
is given by

poB =€, AL, (2a)
E; =ic (A4, — Al 4, (2b)
where €, , is the three-dimensional permutation

symbol, and the differential equations for the poten-
tials can be written as

€nv€por Byt Ay np T e260 (A0 40 — AL 44)
—ico (A — Al L) =J], (3a)
Cze)\v(A;/,)\ll_A:l,)\u) = Jﬁl (Bb)

J] is the current density of the source and J) = icp’,

where p’ is the charge density of the source. Finally

u L, = 8, which is the three-dimensional Kronec-
ker symbol. [The matrices representing the constitu-
tive dyadics in (1) are assumed to be regular.]

Introducing the definitions n2 = ¢2ue and

e:)\ = 6_1610\ - 6K)\’ (43)
(el = ppk — 6.0, (4b)
o = 07lo,, — bps (4c)

where ¢, i, 0 are constants (different from zero),we
may write the differential equations (3) in the form

* *
€rnv€or (G D)TAL o +n2[e5(A) yq — Al 44)

— (@/e)o/)oi\ Ay — AL )] — AL, —n?
X [Al 44— (/)No/A] 4] = ud, (5a)
e;v( 111,4>\ ~Ai,y)\) _Azi,m— n [ 4,44 — (i /C (0/5

Ay gl =udim2. (5b)

In (5) we also have applied the Gauge condition

A5, +n2[AY = G/c)(0/)Ay] =0 (6)

in the usual wayl5 to the isotropic terms of the equa-
tions.

Applying fourfold space-time Fourier transforms
[ef.(12), Sec. III] to the differential equations (5), we
obtain the matrix equation

M+ V's )a =s., (m
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where
Mg, =— exouép)\'r(u:})*kp’ko
+n2[ky2el, — (i/c)o/e)kyol], (8a)
M, =—n2[khek, — @/c)o/€)ol\ 1R, (8b)
M =— e} kikYy, (8c)
My =+ €hkR], (8d)
V' = kiR +n2[Ry2 — (1/c)o/€)ky), (8e)
and
uljg,74/n?). (9)

It is noticed that M vanishes when the medium is
isotropic.

Defining

g.=M, +V',)7, (10)
we finally get

a, =g, (11)

which establishes the formal solution of the problem
in the transformed domain.

. TRANSLATION INTO FOUR-DIMENSIONAL
TENSOR FORMALISM

Consider a tensor field 7... (x,) of arbitrary order
(we use four-dimensional tensors as in Ref. 12) and
a fourfold Fourier integral

Lx) = jff Tt

-0 —ico

- f b (B)e" s sd(k), (12)

(ky)eiksxsd(kr)

where the 1ntegrat10n is to be taken over the whole
Minkowski 4-space M,.

A proper Lorentz transformation can be applied to
the integration variables %, as well as to the space-
time variables x,. The inner tensor product & x_ is
invariant,and we still have to integrate over the
whole space M, because a Lorentz transformation is
a one-to-one mapping of M, on itself. Therefore,the
Fourier amplitudes ¢... transform like a tensor if
T... does,and vice versa {because the transforma-
tion matrix does not depend on x,).

The four-current density J, transforms like a tensor
(cf.Ref.16) and so does the four- potential A (cf.
below). Therefore,the Fourier amplitudes ]r and a,
are tensors of order one (4-vectors).

We make also use of the 4-vector

S, =8,

rs s?

S,. =ud,, +k/m2U.U,), (13)

where k ={n2—1)/c2 and U, is the 4-velocity,i.e.,
=(0,0,0,ic) and S = (J' J4/n2) It is seen that
the Fourier amplitudes of SP are given by (9).

Furthermore, we define a second-order tensor g, by
means of the components in K’ as given by (10). The
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tensor character of Eq.(11) now ensures that

a,=g,5 (14)

r rtt

is valid in an arbitrary inertial frame, and, referring
to the statements made in the beginning of this sec-
tion, we are able to give a covariant,formal solution
of the problem:

An f

where
G, ) = [ g (kS
M4

(), (2,)d(z,), (15)

ik,u

e ttdlk), u,=x, —z,.

(16)
For a nondispersive medium,n (and therefore also STS)
is independent of the variables %,. In that case we

use a modified definition of the Green's tensor func-
tion:

A,06) = Gy )4 fc (u,)8,(2,)d(z,), (15)
where
Golt) = [ g,,()e " t"a(k,). (16')
M

4

Since the Green's tensor function (16) is simplest in
K' (which is a consequence of the factthatthe govern-
ing differential equations are simplest in K’),an
evaluation of the integral in (16) should be sought
(may be well known) in the rest frame of the medium
(cf.the following sections).

In Minkowski's theory the field quantities E_,B ,H,,
D, transform in a certain manner from one inertial
frame to another,which is called the Lorentz trans-
formation of the field. This can be expressed very
briefly by saying that the field quantities constitute
the components of two second-order field tensors
F,. and H, (consult Ref.17 for the definition).

Define a 4-vector A, in such a way that the A/ are
identical with the potentials entering Eqgs. (2), then
the tensor equation

rs C(As r r,s (17)

is valid because (17) is equivalent to (2) in the rest
system K’,which in turn shows that the primes may
be omitted in (2b), whereas the spatial part of (17)
is equivalent to the equation B, = €.<qu,,, K

In order to express the field quantities H, and D, by
means of the potential, this can only be done via the
constitutive relations. Therefore, it might be conven-
ient to have covariant forms of these relations to our
disposal.

Following Marx18 in a slightly deviating way, we de-

fine
= (1/c)F,, U,, (18a)
F, = (1/ic?)F* . U,, (18b)
K = (1/c2)H, U, (18¢)
R, = (1/ic)H,U,, (18d)

where F* H) are dual tensors,i.e., F} = (1/21)

’
e say It is readily seen that F' (E’, 0),

K, = (D’ 0),and K’ = (H ,0).

E.Ts mn F, mn?

K/ =1(B;,0),
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By defining tensors e,,s, ; by means of ep’ = €05
My = U, = 0 (the remaining compon-
ents can be chosen arbltrarlly) it follows from (1)

that

640 = WZ4

K, = e.F,, (192)
F, = mK,. (19b)

Using tensor relations inverse to (18) (expressing
second-order field tensors in terms of first order
field tensors), one can express H__ in terms of F,,
say (cf.Ref.18). Marx18 proposed that the components
e/, m/, are vanishing. In order to get regular mat-

rices,we choose e/ = m;, = 0, €4 = €,andmgy = p.

If wanted, even a covariant, four-dimensional formula-
tion of the “wave equations” can be obtained from (5)
by means of a simple translation technique. (The
usual way is to introduce 4-potentials into the 4-ten-
sor formulation of Maxwell-Minkowski equations, as
was doneby Viglin7 and earlier by Jauchand Watson19
for the isotropic case.) Defining m Sl such that m Slm .
=,,,we obviously have (m7 1)’ = pil, (mgly)’ = l/u
Furthermore the definitions ¢ = (1/€)e,, — o,
()™ (m-l) — 6, imply that the spatlal parts of
these tensors in K " are given By (4) and that the re-
maining components in K’ are equal to zero.

Consider the first term of Eq. (5a); we get

Kln4 rst4( t ) TAq

= —(I/C )enlnu 7st’u(7n_1 *'Ag ri

’
€€ por(“ur) Ao,p)\ syri

Uv,u,.

It is observed that the “fourth component” (k is re-
placed by the integer 4 in the final expression) vani-
shes.

The second term in Eq. (5a) is translated in this way:

* ' ’ __hr= 2 ’ ’ ’
n2e,(Ay g — Al 44) = Ty e/ (4], s — AL, U,
Again, it is noticed that the fourth component of the
final expression vanishes.

In order to translate the third term of (52), we define
tensors s, ands} by meansof s, po,s4p $,4=0,

Siq =0,5x =5, /0—8,,. Since spg’ = o [cf.(4)],we

conclude that

A} g =~ (o/c2e)s) (AL — AU,

— (io/ce)oli (Ay,
and that the fourth component of the final expression
is zero.

The first term of (5b) is equal to the fourth compon-
ent of — (1/c2) e WA — A, UU;, whereas the
first three components are equal to zero

It is not difficult to translate the remaining, isotropic
terms of (5a) and (5b) into the four-dimensional
form of the isotropic wave equation.

Omitting primes, we finally get a 4-tensor formula-
tion of Eq.(5):

(1/c? ){[6klnu rstu(mn n* A
- (o/e)skl (A, ~

*
+nzehl(Au,lv A ,uv ]U V

*
Al,u)Uu+eln(An,'rl ~Ar,nl)U‘rUk}

+ Ay, — (2 —1)/c?]A, U U =-S5, (20)

kynn

Finally, we want to make some remarks on dispersive
media. In K’ the constitutive parameters of a dis-
persive medium are assumed to be functions of the
frequency w' = ck:l/i corresponding to a Fourier
component of the field.

Since the formalism provides a decomposition of the
field into Fourier components in all inertial frames,
we may define a “frequency” referring to an arbitrary
inertial system K:

w = ck4/i. (21)

In order to get covariant forms for the functions
which express the dependency of the constitutive
parameters on w’,we observe that

w'=—kU=-—kU,. (22)

Clearly, (22) shows that in K (different from K’) the
constitutive parameters depend not only onk, (i.e.,
w) but also on the spatial part k of the “propaga-
tion tensor” k.

IV. ISOTROPIC,NONDISPERSIVE MEDIUM

For an isotropic, nondlsperswe medlum 1t is seen
from (4), (8),and (10) that € * o = 0,etc., = 0,and
gl = (1/V’)6 Deflmng a Green's functlon G’ ( u})
such that G/ (u;) = G'(u})5,, we find that this function
is given by the 1ntegral [ef. (16a)]

iklu!

1
G'u’) = et d(Rr), 23
(”’)M{_(_me ( (23)

where V'(k,) is given by (8e).

The substitution k) + il = &k}, 13 = (i/2¢)(0/€) leads

to
[4u4 a+ico
G'lw) = e fff J
- 00 a-ico
ikt’u;
x - dk),a =~ 1],
Bk +n2ky,2+1;2) " (24)

The integral in (21) is the Fourier integral of the
time-dependent Green's function of the Klein—Gordon
differential equation. Since G is a tensor of zero
order (Lorentz invariant) the Lorentz transformation
of this well-known function20 to an arbitrary inertial
frame can be achieved by translating the dependency
of this function on the variables u, into covariant
tensor language,as was done by the author in Ref.13.
This is easier than evaluating the integrals in the
covariant edition of (24) which is given by

e'ktut
u) = e’ tM{ kikt — (ktUt)Z—[(n/c)l,U,]zd(k')’
(25)

where we have defined a 4-vector [, such that I/ =

(0,0,0, (:/2¢)(0/¢)).

The “difficult” way of evaluating (25) was used by
Chen and Yenl© and, for the lossless case,by Comp-
ton.5 Earlier K.S.H. Lee and Papas! evaluated these
integrals for a time-harmonic source in a simple
medium. [Harmonic time dependency implies that
the & -integration in (25) “ disappears”. This is
readily seen from (15a) in connection with (25):
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Assuming that S_ in (15a) is time-harmonic, the z ,-
integration introduces a time-dependent § function
in (24)]

V. IONIZED GAS

Consider a medium which is dispersive but otherwise
s@mple (i.e.,isotropic and lossless). Furthermore,
assume that g = p, and

(W) = e(—k,U,) = €o[1 + (ck(,y /k,U,)2],  (26)
where u,, €, are the permeability and the dielectric
constant of vacuum, k() = iw,/c,and w, is a real
number.

Following Ref.4,we wish to evaluate the Green's
function for the unbounded space in the form of a one-
dimensional integral, but our approach is different
from that in Ref.4: A well-known result referring to
the rest frame K’ of the medium is transformed to
K. In the case which is under consideration Eq. (16)
reduces to

G, (u)) = po f 7o €
S M, kik! + n2k}2

— 2 ’
8, = K/MEULU ypryt

L), (27

where we have made use of (13).

It is well known from the corresponding radiation pro-
blem in a nonmoving and nondispersive medium that
the threefold space integral in (27) can be reduced to
a single integral (of course,this result can be obtained
by exactly the same steps which are used in Ref. 4

but with the simplification that v is zero ).

We have
i
G, (u}) = in2y, f f
- 100 ©0

+ [0, + (k/n2) UL [pi /= (R5Z F nZEP)]

'(k ! 7 kl I)

T N ey, (28)
where p’ = (u}2 + u4?) and H} is the Hankel function
of zero order and first kind.

By means of (26),the argument of the Hankel function
can be written as p'[k2(, — (k32 + k}2)]1/2.

As in Ref.4 we choose (without loss of generality) the
velocity of K relative to K’ to be directed along the
x4(x4) axis. This implies that the first and the second
component of a 4-vector are uneffected by the Lorentz
transformation so that p’ = p. Furthermore, k{2 +

k32 = k% + k% and kjuj + kjuly = kauy + kyu, (because
these expressions are tensors of zero order,i.e.,in-
variants).

The transformation of (27) to an arbitrary inertial
frame K is now almost trivial. Eliminating /%2 by
means of (26),we obtain

00 o kg)UU
ot =t [ [+ 2B}
ns \U¢ o . 'ns czk(zp)+(kar)2 (29)

x Hylo\[RZ, — 3 + kple’ 5" " ap ak,.

The first term of this expression (containing bns) may
be integrated with respect to k5, leading to the result
of Ref.4.

-100- 0O
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On the oi;her hand, it can be done in this way: Since
kiR + n2ky2 = kb — kEy =k k, — kG, the first term
of &2’7) can be wrrittren asp T ?

gikrur
R, — (RE) — k}

This expression is covariant (!), and the spatial in-
tegral of this term is well known (from the simple
wave equation) and is equal to explir (k2 — £3)1/2)/4mr
in agreement with Ref, 4,21

100 o
#Oéns feik4u4 fffk
-00

=1c0

T dlk, kg,

VI. LOSSLESS,ELECTRICALLY, UNIAXIALLY
ANISOTROPIC MEDIUM

Consider a medium for which 0,0,,and (u;}) are
vanishing and
000
e =000 ,
00

(30)
T—1

where 7 is a given positive constant [cf. (4)].

M,, as given by (8) reduces considerably,and g/, is
readily found from (10). We get

1/v 0 0
0 /v 0 0
g (k) = 0 0 x (1— 1n2egky |, (31
vV'Z! \A
V'Zz Vz
where V’ is given by (8e) and
X' = k{2 + k42 + TR42 + k)2, (32a)
Y’ = k2 + ky2 + k42 + 1(nky)2, (32b)
Z' = k{2 + k42 + TR42 + Tlnky)2. (32¢)

If we restrict the discussion to inertial frames mov-
ing on the axis of symmetry (i.e.,the x4 direction) it
is consistent (i.e.,independent of the inertial frame)

to define two 4-vectors s? and s¢ in such a way that

s, =82+ seand s§=s53=5¢=s5¢=0.

Case I: Consider a source for which s¢ = 0,e.g.,
a longitudinally orientated current loop (magnetic
dipole). Obviously,s, = s{, S, = sj},and it is im-
mediately seen from (31) that the only mode which
is excited is identical with the isotropic case. This
mode is called the ordinary or the first mode (cf.
Ref.11).

Case II: Next,consider a source for which s2 =0,
e.g.,a longitudinally orientated, electrical dipole.
Using the continuity equation s4k4 + sjn2k) = 0,we
derive,by means of (14) and (31),the equation
ge(k) =1/Z(,).

grt(kn)st Zg‘*(k,,)ﬁ,,tst, (33)

Obviously, only one mode is excited. The mode is of a
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different form than in Case I and is called the extra-
ordinary or second mode (cf, Ref.11).

It is not difficult to find the corresponding extraordin-
ary Green's function Ge from the ordinary Green's
function G° = G as given by (23), (24) (with o = 0).

The connection between the Green's functions is given
by
Gelu) = T16°(uy, tg,us/NT ,uy/NT). (34)

In K’, (34) is verified just by inspection of the corres-
ponding fourfold Fourier integrals,and it is easily
seen that the relation is covariant under those special
Lorentz transformations which we are dealing with in
this section.

G(u,) may be found in Ref.13. Applying the extraord-
inary Green's function Ge(u ) to the case of a time-
harmonic source,we readlly derive the extraordinary
Green's function as given by Lee and Lo.%

Case III: Finally, consider an arbitrary source
distribution. From the continuity equation s’'k’ +
n2sjk; = 0 in connection with (14) and (31),we get

al = g;s}, (35)

where we have defined a tensor g, by means of the
components in K':
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0 0 00
1— 7 0 0 00

vz e 00 | (39
Ryky Ryky 0 0

The contribution to the Green's function G, corres-
ponding to the first matrix term in (36) can immedi-
ately be obtained from Cases I and II. As to the
second matrix term, the evaluation of the Fourier
integral is more complicated. But,if G/, can be
found in K’, the transformation to another inertial
system K is simple. In fact,the second matrix in (27)
is not affected at all by Lorentz transformations be-
tween inertial frames moving on the axis of sym-
metry. (Of course,the way in which the matrix de-
pends on k, is affected.)

Though there is no need for working in K at all (as
was done in Ref.6),it is easily verified (in K’) that

V==rkk, +(1—n2(k,U,/c)?, (37a)
Z==kk,+ (1—1)(k,T,)2+ (1—m2)(,U,/ )2,
(37b)

where we have defined a 4-vector T, such that T, =
(0,0,1,0).

If the frequency w is introduced by means of (21), the
equations V = 0 and Z = 0 represent surfaces called
the ordinary and extraordinary dispersion surface,
respectively. These surfaces are of fundamental
significance when asymptotic expressions of the
Fourier integrals are to be evaluated (as was done in
Ref. 6),but this can more easily be done in K’ (cf.
Refs. 22, 23), whereupon the result can be translated
to K as outlined here.

/v 0 0 O

~ 0 1/v: 0 0
grt =

0o o0 1/z/

0o o 0o 1/z¢
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Structure of the Wigner 9/ Coefficients in the Bargmann Approach
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Bargmann's treatment of the Clebsch-Gordan (35) and Racah (65) coefficients is here extended to the case of
Wigner 9j coefficients. The generating function for the 95 coefficient is computed by the analytic method. The
result is compared to the Schwinger's expression derived with the algebraic (boson operator) method. The
full symmetry of the Wigner 9;j coefficients is manifest and transparent in the Bargmann's formalism. A new
explicit expression for the Wigner 9j coefficient is derived as a sixfold sum which may be regarded as the

analog of the Racah's formula for the Racah coefficient,

I. INTRODUCTION

The practical implication in the use of the rotation
group machinery in handling the composition of angu-
lar momentum states obviously warrants a detailed
analysis of the coupling and recoupling coefficients
such as the Clebsch—Gordan, Racah, and Wigner 9;
coefficients. Bargmann's beautiful exposition of the
representations of the rotation group! in the Wigner
Festschrift issue of the Reviews of Modern Physics
(October, 1962) is presumably well known, It is quite
remarkable that results on the representations and
the coupling and recoupling coefficients all come out
in such a coherent, transparent and effortless way.
We have in mind here, in particular, the following
features of the coupling and recoupling coefficients:
(i) derivation of the generating functions; (ii) sym-
metry properties; and (iii) explicit summation ex-
pressions. For the Clebsch—-Gordan (35) and Racah
(6;) coefficients, these features are all worked out in
detail in the Bargmann article. For the Wigner 9
coefficients,? the standard reference for the generat-
ing function is the celebrated unpublished report by
Schwinger,3 where everything is obtained by the alge-
braic (boson operator) method, The 72-element sym-
metry for the 95 symbol is discussed by Jahn and
Hope.% For an easy access to many classic references
as well as a highly readable introductory account of
the quantum theory of angular momentum, the reader
is referred to the volume edited by Biedenharn and
Van Dam.3

It would seem desirable, at least for methodological
interest, to push the Bargmann scheme to treat the
case of the Wigner 97 coefficients. Indeed we find that
the analytic approach is sufficiently powerful to ren-
der the treatment feasible.

Thus the generating function for the 9 symbol is com-
puted (Sec.II). The result is essentially equivalent to
that of Schwinger.® In Sec, III, the 9 coefficient is ex-
tracted by expansion from the generating function. In
Sec. IV, the symmetry of the 9; coefficient is easily
read off in the Bargmann formalism. Since the Regge

h11 Gz i3l , ) . ) .
i = J11 he2 A3 Jo1 Jag
“Jo1 Jaz Jaz; = 1

(jsl Ja2 7335 By \myy myp myg Moy Myy

% My Mgy M3y Myg Higy
Ji1 Je1 Jzi Jiz a2

It is clear that there are six triangular relations, one
for each triplets of j belonging to the rows and col-
umns on the left-hand side of Eq. (1). The following

symmetry,? which boosts the previously known sym-
metry of Clebsch-Gordan and Racah coefficients by

a factor of six (from 12 to 72 elements for the former
and from 24 to 144 elements for the latter), is entire-
ly contained in the generating function approach,8
there does not seem to be an obvious addition to the
known 72 element symmetry for the 9 symbols. The
fact that the 9j coefficients possess less symmetry
than the Racah coefficients may be due to the tighter
structure of the former.

In Sec.V, the fifteenfold sum expression for the 9;
coefficientin Sec.Ill is reduced, after proper considera-
tion of the constraint conditions, to a sixfold sum.
This new explicit form [Eq. (65) or (65a) below] which
manifests full symmetry of the 94 coefficient may be
regarded as the analog of the well-known single-sum
expression for the Racah coefficient. As one of the
consistency checks, it is explicitly verified that when
one of the 95 values approaches zero, the sixfold sum
for the 95 coefficient collapses to a single sum for the
Racah coefficient with the correct phase as well as
normalization factors. Finally, the following quest-
ion is posed. Inasmuch as the Clebsch-Gordan coef-
ficient may be regarded as a ;F, function at x = — 1,
and the Racah coefficient as a Saalschutzian ,F;
function at x = 1, the seeming inference that the Wig-
ner 9j coefficient might also belong to some »f, func-
tion turns out to be unwarranted.

II. GENERATING FUNCTION FOR THE WIGNER 9j
COEFFICIENT

As is well known, the Wigner 95 symbol is the recoup-
ling coefficient which connects two different schemes
of adding up four angular momenta (such as from Is to

ji couplings).® In parallel to Bargmann's treatment
of the Racah coefficient where the 65 symbol is de-
fined through a sixfold sum of the product of four 3;j
symbols,10 our starting point here is that the Wigner
9 symbol is defined through a ninefold sum of the
product of six 37 symbolsll:

Ja3 J31 Jz2 a3

Mag3 M3y Mgy Mzj

M32 Myg Mgz M3y 1)
J32 hs Ja3 Jas

f

short-hand notations are found convenient:

3
J, =2 G P=12,3, (2a)

g=1
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3

K, = 2 dgps (2b)
g=1

kpq: ﬂ—szq’ b,q= 1’2’3’ (3a)

k= K, — 2+ (3b)

There are a number of constraints on the 18 %2 and %/,
namely

Ekﬁq = JP’ (42)
q

2k, =K, (4b)
»

B,—k,=J,~K, (5)
Ld, =LK, =4 (6)
b4 v

The generating function p (7, 7’) for the 95 symbol will
be written as

’ SR
p(7, T )=N kZ) 4? {9]} H Tpa e, (7)
py “Pq

where the normalization constant

1/
[I‘;I(Jp + 1)K, + 1)j 2
Tk, L Ry,

(8)

comes from the six sets of triangular coefficients.
On account of Eq. (1), the generating function can be
readily cast into the integral representation

3 o
p 1@,

3
p(r,7) = [dpg(k,,) T @
r=1 g=1

3 ~
= [du4(,,) expg1 (D, + D)), (9)

where the six ®'s are the generating functions for the
3j symbols, one for each triplet in Eq. (1). Explicitly,
we havel? (p, ¢ =1,2,3)

@, = ®(7p1, T2, T3; $1, Spe, Spa) = €xpDy, (10a)

(I)q = <I>(‘riq, 7124, Tétﬁ I-‘Tclq, th% PT§34) = expﬁq,

(10b)
where Cp 2 is a shorthand notation for the two-compo-
nent complex

_/¢
e =(12)

Recall that the £ and 7 are the variables that enter in
the basis function

, j+ j~m
v, () = et 1T : 11
" TG TGy w
0 ~ -
In Eq. (10b), I'T is thetransposeof I’ 5(1 ,and ¢

is the complex conjugate of {. The D are 3 X 3 deter-
minants, namely

Tpl sz TP3
Dp= ‘Epl épz §p3 y (12a)

M1 Mp2 Ty

’
qu Tzq qu

D, =| My, Mgy Mgy | - (12b)

g1q 'EZq §3q
Finally by du y(z) is meant the “Gaussian” measure

in the space of N-dimensional complex variables,
namely

duy(2) = 77N exp (~Zz2)dVNz. 13)

The proof for Eq. (9) is obvious and will be omitted
here,13

The computation of the generating function for the 9j
symbol is thus reduced to the evaluation of the right-
hand side of Eq. (9). This can be done in three steps.

Step 1: Integrate over the var1ab1es €y, Only
four of the six D's,namely D,, D s 0= 1, lﬁ 3,con-
tribute here, Wr1te

T D, =Lty +d,Mh,) + E, (14)
q q
where _ _
€ = Tagl2q — T2g Magr (15)
dq =- TI’iqZZq + TéqZSq’ (16)
E =23 71,05,3, (17)
with ! _
Opquprg = | P0 P (18)
Mo T ’
bg 'prq’
thenl4 !

fd“e(cn, €125 813) exP(C'Z1 +dmy)
x exp(D; + E) =expf, (19)

T11 Tiz T13
J= ¢y ¢ ¢3| +tE. (20)
d, d, dg

: Integrate over the variables o Rewrite

0, 0 O3
f= g21 g22 523

7'21 7722 7723

+(c"Ey + drmy) + EY, (21)

where
’ ’
711732733
_ ’ ’
0 =|715731733 |, (22)
! r
713731732
r = hos
¢ = L By, g, (23)
d =—
4 E Hpq£3q’ (24)
Tii  —T13722T31 T12753T5)
H={ 793751752 T2 — T11723T52), (25)
— T12721 T33 T11722733 Ti3
=\ X &5)n,, (26)
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with .
711722723

A= 112721723 |- (27)
713721722

Since E’ and D; are independent of the variables Cogs
the relevant expression is

exp(E’ + Dy) [T dug(E,,) expl(c’Ey)

x fgd#3(ﬂzq) exp(d’'n,) exp[(c X £,)'n,] expD,
= exp(E’ + L) f{} dpi 3(€5,) explc’E,) expX,

(28)
where _
X =d"i, + g AL, (29)
with
d'; = (d’ x Tz)q, (30)
03732 + 03723 — 03Ty — 0373
A= — 01735 01731 1 03753 — 03722
— 01793 — 037y3 01731 T 0375
(31)

The last integral in Eq. (28) can be performed with
the aid of Bargmann's theorems on the Laplacian in-
tegrals.15 The result is

SNty e[~ B (1~ Aty + Fy + dnety)
=det(l — A)"1 expd’ T(1 — A)~1¢’
(32)
with
det(l —A) = (1 — 0371 — 0755 — 03753)2.  (33)

Last Step: Integrate over the remaining variables
{3,- The remaining expression is

p=det(l — A) [dug(Es,)du4(n,,)
X exp[E’ + Dy +d"T(1 — A)"1c¢’].  (34)

The last term in Eq. (34) can be rewritten as
d"T(1 — A)lc’ = £ Png (35)
in which ¢’ is given by Eq. (23), 4” by Eq. (30) and

(1 — A)™t = [det(l — A)]"1/2

1 =017y — 03731  — 037y
X[ —01Tgy 1 =075 — 03755 |, (36)
—01Tp3  — 03733 1 —037,5
0 T2z — T2
P=[det(l1—A)] Y2 HT|—71,, 0 —7y |H (37)

Tag —Tg1 O

Equation (34) then becomes (dropping now the sub-
scripts 3 on the ¢{'s)

p=det(1 — A)"1 [dug(§)dus(m)
x exp[(A x )7+ (13 X &) + ETP7)
=det(l — A) [dp, () exp[(A X & + ETP) (13 X §)]
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= det(l — A)1 fdu (&) expE 70 ¢

= det(l — A)"1-det(1 — Q)-1, (38)
where
Qpg = (NT3)8,, — T30 + @, (39)
with
0 — 733 T32
Q=P Tz3 0 — T31 |- (40)

—T3p 731 0

The final result is remarkably simple. The generating
function for the 9j symbol reads

p(r,T)=N Z 95 I kﬂqr'kfﬁq
k'k,{J} oy P4 Tpd

= det(l — A)"1-det(l — Q)1
=[G(r,1')]"2 (41)
in which det(1 — A)~1 is given by (33) and
— 733()\3 + Plz)]z- (42)

With the substitution of the matrix elements P, from
(37), we get

3 6
G(T, T,) = 1 - E apq - ba ’ (43)
bq=1 a=1
where
(@,,)

I ’ ’ r’ r ’
721731712713 722732711713 723733711712

= ’ ’ ’ ’ ’ ’
T11731722723 712732721753 713733751752 |+ (44)
’ 1 ! I !
T11T21732733 T12722731733 T13723731732
' r !
711711732732 723723
’ ! 7
731731722722713713
To1Th1T10T! 0TanTh
= 21211
(b,) 21712T12733733 |, (45)

’ ’ 1
—T11711 722722733733

I’ ’ ’
— T217217327327137T13

I ! !
— T31731712712723723

Note that the sum of the six b terms may be written

¥
as det | 7,77 |,namely,
T11 T} T{o5 T1374
6 11711 T12712 "13713
’
Z;lba_ T21721 T22T22 T23723| > (46)
=

! r ’
T31731 732732 733733

where the indices of the entries in (46) may be re-
garded as complementary to those in (44).

Comparison with Schwinger's result shows that the
Schwinger's expression [Eq. (4. 37) of Ref. 3] differs
from our Eq. (43) in a few changes of signs and some
shifts in the primes. Since our expression [Egs. (44)
and (45)] cannot tolerate such changes without ruin-
ing the symmetry of the problem, we believe that
these discrepancies are most likely typographical in
origin.
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I, EXPANSION FORMULA FOR THE 9j COEF-
FICIENT

Expanding [G(7, 7')]2 in powers of 7 and 7/, we have

; 3 R
N kzk)l {9j} pﬂ ke Tpéq
s g 6
=2 (n+1)< L oa,+ L b, )
n=0 p.g=1 a=1
3 6 gYrq pYa
=L@+ oo o2
7 =0

(47)
pg=l a=1 Vpg Wy

€

Comparing the coefficients of 7,, and 7/ on both

»
sides of this equation, we get !

. (n +1)! W rwe+Ww,
foj} =N 2 —— (— 1), (48)
v, w
I1 oov te !
pg=1 a=1 ¢ ¢

where the summations on the right-hand side are sub-
ject to the following set of matrix component-wise
constraints:

kpq = qu + wpq’ (492)
k,gq = (qu)T T W, (49b)
3 6
n= E qu+ E L) (50)
p,q:l a=1
where
w; twy wytwg wy twg
(wp) S| w3 +wg wy +wy w +wg |l (51)

Wy T wg Wy twy wytwy

The caret operation on any matrix element z,, is de-
fined here as

= 2
z, = 2, —2Z
bq 21 bq Pq

=2z +z l=m=p, (52)

lq mq’
Note that &, , %/ ,V,,,and w, are all nonnegative in-
tegers. With the aid of the identities (4) and (6), we
have

3
Z_; Vg = —d,, (53a)
g=1

3
Z_} vy =n—K,. (53b)
g=1

Thus Eq. (49) reads
kPq =n-= Kq ~ Ypg + Wy = m’ﬁq’ (4927)
kg =n—dy= Vg T 0y = Wiy (49b")

From Egs. (3a) and (3b), we get the same expression
for qu,namely
2j

=—n+Jp+Kq+upq—w

a - (54)

bq
The implication of this statement will be taken up in
Sec.V. Before we eliminate those redundant summa-
tion variables, let us dispose of the symmetry pro-
perties of the 9j coefficient,

IV. SYMMETRY OF THE 9 COEFFICIENT

The symmetry of the 97 coefficient is embodied in
those operations which leave the generating function
formally invariant, By formally invariant we include
those cases where the determinant [Eq. (46)] may
undergo a change of sign, thus resulting in an over-
all phase factor for the 9j symbol. It will be conve-
nient to speak of the operations on the various sets of
nine quantities j, , &, s R0y Ty Thos Vpppand @, in
terms of their respective 3 X 3 matrix arrays., Thus
one can easily read off the symmetry from Eqs. (48)—
(54).

(i) A permutation of given two rows or two columns
in the j matrix implies a corresponding permutation
in the %2 and £’ matrices simultaneously. This induc-
es a corresponding permutation in the v and w ma-
trices on account of the constraint conditions ®% =

® 3 and Pk’ = @ I, The effect on the six w, are
such that the set (w;, w,, wy) is mapped onto (w,, w;,
wg) and vice versa. Thus for an odd number of per-
mutations of rows and columns, there is a net change
of phase equal to (— 1)%“x which is (— 1)7 = (—1)%ip,
by virtue of Eqs. (4), (6), (49), and (50).

(ii) Transposition of the j matrix implies £ <*%’T and
hence = N'Tor v © vTand w © w7 (i.e., wg & wy).
This clearly leaves Eq. (48) invariant,

The symmetry (i) and (ii) corresponds to precisely
the 72 element symmetry discussed by Jahn and
Hope.4 As was in the case of 3j and 67 symbols, the
Bargmann approach enables one to read off the under-
lying symmetry in a quite transparent way.

V. EXPLICIT EXPRESSION FOR THE 9j COEF-
FICIENT

The expansion formula (48) calls for a sum over 15
variables (v, , w,) [if we disregard # as being fixed
by (50)] subject to the constraint conditions (49).
Half of the 18 constraints in (49) are actually re-
dundant, The simplest way to see this is to note that
the 7 matrix (54) reconstructed from the £ and %’
matrices turns out to be identical for both (49a) and
(49b). Thus the number of independent constraints
equals the number of the given j, 2 which is nine in
this problem.

We find that, consistent with all the constraint con-

ditions, the 15 summation variables are expressible
in terms of a basic set of six independent variables
z,. The solutions to (49) can be described in gener-
al as follows.

We let
Zpy = Vpg t Tpg (55)
W= Wy, hy,, (56)
where

hy + hy hy t hg hy + g
(Rog) =\ hy + hg hy + by hy + by (567)
16 By + hg hy + By hg + Ry
wi
hy =11 * Jag tiza,  hg =izy tdan t iy,
hy = Jp1 + J1o t sz, ha Fiig todga t Jass

hs = Jp1 + J3p F i1z Pg Sdz1 tJia T hase
(58)
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Then Egs. (49a) and (49b) are exhausted by 2y, 2, 25 +24 25 + 25
qu+w;,q=J forall p,qg=1,2,3 (59) 2y, =\ 23 t 25 25 T 24 24 + 24 (62)
by virtue of the identities Zy T 2g 2y Y25 2312
— N — b’ = h -
- J— h’pq = kpq + dpg = kpq + (]qp)r (60) Then Eh(: w, may be expressed as
- o w,=3(d—n)+2z, —h a=1,...,6 63
2y = (3,)7 . o G TR R e o
a with 6
An explicit solution then calls for a particular choice n= 75z, (64)
of (i) z,, in terms of a basic set of six z, and (i) w, a=1
in terms of w,,. Among many essentially equivalent .
»
sets of such solutions, one sufficiently symmetric set The last expression follows from (53) and (55).
is obtained by taking the structure of 2z, in exactly We thus get an explicit expression for the 95 coef-
the same form as that of the w,, of (51), namely ficient from Eqs. (48), (55), and (63):
. ) 6
gjll Jia ]_13‘ (— 1)[(‘“26:115)/2’Ze‘zs“GJ(l + 25 ZB>!
. . « - le
{J21 Jag Jezp=N"12 ’ (65)
?' i3g J & 131( ')'I"SI[‘(J 6z)+z R
J31 ]32 J 3 2, —7] )i 2 -—_ - :
: 3 pa=l pa ]pq =1 2 fye 8 o o
[
where z,, are given by (62) and the summation is We record below two alternate forms which, while
over all z, = 0, such that all the factorial quantities manifesting slightly less symmetry than (65), have
are nonnegative integers, other redeeming values:
The symmetry discussed in Sec.IV is of course mani- {a) The unpleasant factor of 1 in (65) may be re-
fest here. An odd number of permutations of rows moved by taking in place of (63),
and columns of the j matrix which can be compensat-
ed by the interchange of the set (24, 2,5, 25) With (2, w, =d—n+z —h,
25, 2 6) yields a net change of phase equal to » L ’ (637)
Wpy3 = Zpyz — Rpyz,
(__ 1)24*25*26'21'32‘23 - (__ l)E‘Uoc = (__ 1)J
then
by virtue of (63).
}
. . 2t + 6
gjn Ji2 his (— )77t (1 + 8225)!
JJa1 Jaz Jeay=N"1(~1)7 2 ” (65%)
i . . zy ]
2131 J32 Ja3) l'Izl(zM - ]pq)! pI;Il(J—— %}zﬁ tz,—h,) !(Zp+3 — hyi3)!
r
(b) The summation variables z's in (65) and (65") X, T2, 24—, =V,
may be integers or half-integers (depending on j, ) Norn =2,0n — Xg(l— 8.0) — hras
By a simple change of basis, the summation variables p+3 pt3 4 pat p+37
can be chosen to take on nonnegative integers only. then
From (65a),let (p = 1,2,3)
J
. - . ™ Xt X+ X 6
11 h2 s (1) + g, + BZ}le_x4)!
ljp1 Jog Jaz, = N1 §0 3 3 3 A , (65")
N . . x(x
Toato (e + 2,00 %, +2x,)0 I (x, +1t ) (s, +x, — 27 %)!
(731 J32 Jas b1 2 (x5 + 24) Hxg + x4) p¢q=1( pa + tpg) p=1( p T T 4 8)
f
wlhere tile tma’:;rixt(xp qt): is fofrx?hed irzx1 tt:}'r:: of xuzan- g =y t ey Jop — Jppr
alogously to the structure of the matrices w, , 2, = 7_ - - '
and &, before except that x, is now absent a’i(cl)ng the to =J . 2 Fr] 'trk tek’,
diagonals. The parameters are given as follows Sp Strji—J,—J,,-

p=q=r=1,2,3):
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The following remarks seem in order,

(i) As already pointed out in the beginning of this
section, the number of outstanding summation vari-
ables equals the number of terms (a's and b's beside
the identity term) in the generating function less the
number of the j's in the problem. We recall that, for
the case of Racah coefficient, such a reduction from a
sevenfold to a single sum, as shown by Bargmann,
readily yields the well-known Racah's formula.1? In
this spirit, Eq.(65) may be regarded as the corres-
ponding explicit expression for the 9j coefficient.

(ii) As one of the consistency checks on the expres-
sion (65), it is perhaps instructive to verify explicitly
the following well known identity?l8:

].11 ].12 ].13 (— 1)/272113%s gjn J12 le?
wJe1 Jaz2 s :J(z. A ToT ST
. hiz T DRjyy + 15?722 J21 7318

)131 J31 0 ) )
(66)

N

In establishing (66) directly from (65), we observe
that in the limit j;; = 0, the six triangle relations of
the 9 symbol collapse into four triangle relations for

the 67 symbol, namely &, and 53 of Eq. (10) both tend
to 1. This implies that the following limit is to be
takenl®: (744, T35, T13, T23) 0, (733, T53) 1,and
T4y = Tg1, Tgz3 > Tig. The net effect is that in Egs.
(44) and (45), (@11, @49, 091, @55)~ 0 and (b4, b,, b5,
bg)— 0. This necessitates (V11 Vy3s Va1, Vo)™ 0 and
(wq, Wy, Wg, wg) = 0. The rest of the variables are
now expressible in terms of one independent variable,
say X = kyq — 22,4, namely

(@yq = Jpg) =Wpg)

0 0 x
= 0 0 Jp—dy +x ),
Jy—Ky +x ) K, tx J, —K;—x
n =dJ, +x

wy =kis — X,
w, =Ry —x. (67)

In this way, the sixfold sum in (65) is simply re-
duced to a single sum, and we have

DA +J +x! 1

{8}, 0 =N D

1+ Jp)!

x xl (R, — 0 (kg — 0 (kyy — D)1y — Jy +2)! (I — Ky + 2)1(J; — K, + x)!

= N1 (= 1)k

Ry 1kp thya Ty — )1 () — K1 (J; — K,)!

X 4F3(2 + Jp, — Ky,

Apart from a normalization constant, the right-hand
side is precisely the Racah coefficient, since in our
notation we have 17, 20

1 h2 j13}

1"'22 J21 J31

_ nkij! 1/2
N I, + 1)1 (K + 1)1

- a1 + Jl)!
() — I) 1 Ty — K) kg 1k Uy !
X gF3Q2+ dy,—kyy,—kiy,— kyg;
14y~ dy, 1+ d, — Ky, 1+, — k1), (69)

Combining (68) with (69) gives immediately (66) with
the correct constant and phase factors as expected.

We note in passing that this , F,; function structure for
the Racah coefficient in genemi3 satisfies a criterion
called Saalschutzian?! [i.e., 4, Fp(a;;b;; %) with 2Jb; =
1 + 2Ja;]. A contrary statement in the literatureZé is
traceable to an incorrect transcription of the Racah's
formula.

(iii) In the present approach, we have no immediate

—klg—kyq; 1+ —dy,1 +J) — Ky, 1 +J; ~ K, 1), (68)

I

contact [other than through Eq. (1)] with the other
standard formula, namely!8

h1 iz j132
J21 Jaz jzsg
J31 Jaz Ja3) ’
=T 1)25(2) + 1){711.721?31 1'12].22'732U?13?23‘1331 )
j J327337 {217 123513 di1dia
(70)

We leave it as an open question here whether (65)
could yield (70) directly.

(iv) Finally, it seems desirable to examine the func-
tional structure of the 9j coefficient in the light of
known facts on the lower hierarchy. While the Cleb-
sch—Gordan coefficient is a 3Fy(a,, @y, a5; b,, by; %)
function at x = — 1, and the Racah coefficient is a 4F5
(ay, a5, 04,0a,: by, b,,b,; x) function at x = 1, a naive
conjecture that the 9j coefficient might also belong to
some hypergeometric pF family turns out to be false,
The best that can be saitf in this regard is that the 9j
symbol is a folded products of either ;F, or ,F, func-
tions. Stated otherwise, (65b) can be transcribed into
integral representations (of dimensions either six or
nine) which can be shown to be quite different from
the known representations of a single ,F, function.
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Ref. 5.
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A Class of Matrix Ensembles*

Freeman J.Dyson
Instilute for Advanced Study, Princelon, New Jersey 08540
(Received 23 August 1971)

A class of random matrix ensembles is defined, with the purpose of providing a realistic statistical description
of the Hamiltonian of a complicated quantum-mechanical system (such as a heavy nucleus) for which an approxi-
mate model Hamiltonian is known, An ensemble of the class is specified by the model Hamiltonian H,,an ob-
served eigenvalue distribution-function 7(E), and a parameter 7 which may be considered to be a fictitious
“time.” Each of H,, »(E), and T may be chosen independently. The ensemble consists of matrices M which are
obtained from H, by an invariant random Brownian-motion process, lasting for a time 7 and tending to pull the
eigenvalues of M toward the distribution »(E). For small 7 the ensemble allows only small perturbations of H,.
As 1 — @, the ensemble tends to a stationary limit independent of H, and depending on 7(E) alone, The following
quantitative results are obtained. (1) It is proved that the global eigenvalue distribution in the limit 7 — <« be-
comes identical with the observed distribution »(E). (2) A nonlinear partial differential equation is obtained for
the global eigenvalue distribution p(E, 1) as a function of E and 7. Solution of this equation will show how the
distribution changes from the initial form specified by H, at 7 = 0 to the final form #{E) at 7 = «. Approximate
solution shows that deviations of p(E, 7) from r(E) extending over an interval containing m eigenvalues will dis-
appear exponentially as soon as 7 is of the order of mDZ2, where D is the local mean level spacing. (3) Exact
analytic expressions are obtained for the correlation functions representing the probabilities for finding »
eigenvalues at assigned positions (Eq,..., E,) in the ensemble in the limit 7 — ®, irrespective of the positions
of the remaining (N-#) eigenvalues. It is made plausible, but not proved, that these correlation functions tend

to limits as N = ®, which are universal functions independent of #(E). If proved, this statement would imply
that the local statistical properties (spacing distributions, etc.) of eigenvalues in the ensemble become, when 7
and N are both large, universal properties independent of the global eigenvalue distributions. In particular, the
spacing distributions would be identical with those calculated for more special ensembles by Wigner, Gaudin,

and Mehta.

1. THE WIGNER ENSEMBLE

Wigner! proposed, as a mathematical tool rather than
as a physical model for the description of complicat-
ed nuclei, the “Gaussian Ensemble” of random mat-
rices. The Gaussian ensemble E; is defined as the
set of all real symmetric (N X N) matrices M with the
probability-distribution

pM) = c exp(—~TrM2/q2). (1.1)

Here N is any integer, a is a real number,and ¢ is a
normalization constant depending on N and a. Wigner
suggested that in some respects the statistical be-
havior of the eigenvalues of a matrix M chosen at
random in.the ensemble E; would mimic the behavior
of highly-excited energy levels of a complex nucleus.
Since the number of levels of a real nucleus is infi-
nite,the representation of the levels by a finite ma-
trix cannot be complete. It was Wigner's suggestion
that the levels of the nucleus and of the random ma-
trix in E; should behave in the same way locally, that
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is to say, so long as attention is confined to a group
of n consecutive levels,where »n is a number very
small compared to N.

One of the first results of the theory of random ma-

trices was Wigner's Semicircle Law. This law? states
that the density of eigenvalues per unit energy E of a
matrix in the ensemble E. tends to the limit

|E|< NV/2g,
(1.2)

v(E) = (2/ma2)(Na2 — E2)1/2,
=0, |E| > N1/2q,

as N — «©, The law was proved by Wigner for a large
class of matrix ensembles of which E; is a special
case. The essential requirement upon which the vali-
dity of (1.2) depends is that the matrix elements of M
be independent random variables.

In spite of its mathematical elegance,the semicircle
law is in violent contradiction with the facts of nu-
clear physics. The level density in real nuclei has
roughly the form
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A class of random matrix ensembles is defined, with the purpose of providing a realistic statistical description
of the Hamiltonian of a complicated quantum-mechanical system (such as a heavy nucleus) for which an approxi-
mate model Hamiltonian is known, An ensemble of the class is specified by the model Hamiltonian H,,an ob-
served eigenvalue distribution-function 7(E), and a parameter 7 which may be considered to be a fictitious
“time.” Each of H,, »(E), and T may be chosen independently. The ensemble consists of matrices M which are
obtained from H, by an invariant random Brownian-motion process, lasting for a time 7 and tending to pull the
eigenvalues of M toward the distribution »(E). For small 7 the ensemble allows only small perturbations of H,.
As 1 — @, the ensemble tends to a stationary limit independent of H, and depending on 7(E) alone, The following
quantitative results are obtained. (1) It is proved that the global eigenvalue distribution in the limit 7 — <« be-
comes identical with the observed distribution »(E). (2) A nonlinear partial differential equation is obtained for
the global eigenvalue distribution p(E, 1) as a function of E and 7. Solution of this equation will show how the
distribution changes from the initial form specified by H, at 7 = 0 to the final form #{E) at 7 = «. Approximate
solution shows that deviations of p(E, 7) from r(E) extending over an interval containing m eigenvalues will dis-
appear exponentially as soon as 7 is of the order of mDZ2, where D is the local mean level spacing. (3) Exact
analytic expressions are obtained for the correlation functions representing the probabilities for finding »
eigenvalues at assigned positions (Eq,..., E,) in the ensemble in the limit 7 — ®, irrespective of the positions
of the remaining (N-#) eigenvalues. It is made plausible, but not proved, that these correlation functions tend

to limits as N = ®, which are universal functions independent of #(E). If proved, this statement would imply
that the local statistical properties (spacing distributions, etc.) of eigenvalues in the ensemble become, when 7
and N are both large, universal properties independent of the global eigenvalue distributions. In particular, the
spacing distributions would be identical with those calculated for more special ensembles by Wigner, Gaudin,

and Mehta.

1. THE WIGNER ENSEMBLE

Wigner! proposed, as a mathematical tool rather than
as a physical model for the description of complicat-
ed nuclei, the “Gaussian Ensemble” of random mat-
rices. The Gaussian ensemble E; is defined as the
set of all real symmetric (N X N) matrices M with the
probability-distribution

pM) = c exp(—~TrM2/q2). (1.1)

Here N is any integer, a is a real number,and ¢ is a
normalization constant depending on N and a. Wigner
suggested that in some respects the statistical be-
havior of the eigenvalues of a matrix M chosen at
random in.the ensemble E; would mimic the behavior
of highly-excited energy levels of a complex nucleus.
Since the number of levels of a real nucleus is infi-
nite,the representation of the levels by a finite ma-
trix cannot be complete. It was Wigner's suggestion
that the levels of the nucleus and of the random ma-
trix in E; should behave in the same way locally, that
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is to say, so long as attention is confined to a group
of n consecutive levels,where »n is a number very
small compared to N.

One of the first results of the theory of random ma-

trices was Wigner's Semicircle Law. This law? states
that the density of eigenvalues per unit energy E of a
matrix in the ensemble E. tends to the limit

|E|< NV/2g,
(1.2)

v(E) = (2/ma2)(Na2 — E2)1/2,
=0, |E| > N1/2q,

as N — «©, The law was proved by Wigner for a large
class of matrix ensembles of which E; is a special
case. The essential requirement upon which the vali-
dity of (1.2) depends is that the matrix elements of M
be independent random variables.

In spite of its mathematical elegance,the semicircle
law is in violent contradiction with the facts of nu-
clear physics. The level density in real nuclei has
roughly the form
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r(E) =c exp(hEL/2) (1.3)
and bears not the slightest resemblance to a semi-
circle. Thedisagreementbetween (1.2)and (1. 3) does
not contradict Wigner's hypothesis that the eigenva-
lues of a matrix in E; and the levels of a nucleus
should have the same local behavior. Equation (1. 2)
describes the global behavior of eigenvalues in E;, and
Eq. (1. 3) the global behavior of nuclear levels. Their
local behavior could well be the same even when their
global behavior is different. Nevertheless the semi-
circle law is a stumbling block for anyone who wishes
to believe that the Wigner ensemble gives a useful in-
sight into the behavior of real nuclei. Professor G.E.
Uhlenbeck3 expressed the problem succinctly with the
words: “If you admit that the Wigner ensemble gives a
completely wrong answer for the level density, why

do you believe any of the other predictions of random-
matrix theory ?”

The only effective way to answer Uhlenbeck's criti-
cism is to exhibit a new ensemble E; of random ma-
trices which satisfies four requirements: (1) It pre-
dicts a global level-density distribution in agreement
with observation. (2) It predicts a local statistical be-
havior of energy levels in agreement with the Wigner
ensemble. (3) Its definition is physically plausible.
(4) Its consequences are amenable to mathematical
treatment. The purpose of this paper is to construct
such an ensemble. Section 2 is occupied with the de-
finition of E,, Sec. 3 with the verification that it has
property (1),and Sec. 4 with an incomplete verifica-
tion of property (2). Whether E; also satisfies re-
quirements (3) and (4) is a question of taste which the
reader must judge for himself.

This is not the first proposal of a new ensemble to
describe nuclear levels while avoiding the unrealistic
features of the Wigner ensemble. The most success-
ful attempts in this direction were made recently by
Bohigas and Flores?s5 and independently by French
and Wong.8,7 The Bohigas—~Flores and French-Wong
ensembles take into account from the beginning the
fact that the nuclear Hamiltonian is not truly random
but is composed of one-particle energies and two-
particle interactions whose general structure is known
fromthe empirical validity of the nuclear shell model.
Study of these ensembles is still at an early stage.
They will certainly be further refined and improved,
and it is much too soon to pronounce them inadequate
because they have not yet overcome all difficulties.
In their present form,the Bohigas—-Flores and
French-Wong ensembles do not satisfy items (1) and
(4) in our list of requirements. They predict a level
density which is roughly Gaussian instead of semi-
circular,but still quite different from the empirical
density (1.3). They are mathematically so intractable
that all theoretical analysis so far has been based on
numerical Monte—Carlo computations of the behavior
of matrices of comparatively low order. We do not
yet have any firm evidence of the behavior of these
ensembles in the limit N — . On the other hand, they
seem to satisfy well the requirements (2) and (3).
Further study and development of these ensemblies
will certainly be helpful in bringing random-matrix
theory into closer contact with physical reality.

Another previous proposal of a new type of random-
matrix ensemble was made by Leff8~ 1% and by Fox and

Kahnll;see also Sec. 17.3 of Mehta's book.12 The
Leff-Fox~Kahn proposal was in essence identical
with a limiting case of the ensemble E, proposed in
this paper. Only their physical motivation was differ-
ent, and they did not go very far in calculating the con-
sequences of their proposal.

The suffix B in the symbol E, stands for “Brown,”
since the most natural definition of the new ensemble
arises from the Brownian-motion model of random
matrices introduced by Dyson.13

2. THE BROWNIAN ENSEMBLE

Let Hy be the Hamiltonian of an approximate model
of a nucleus. For example, H, might be

Hy =2m;€;, 2.1
where the ¢, are the energies of independent-particle
orbits in a nuclear shell model,and the #, are Fer-
mion occupation numbers taking the values 0 and 1.
Alternatively, H, might be a collective model Hamil-
tonian or a hybrid single-particle-collective model.
We assume that H; has one unrealistic feature;there
is a high-energy cutoff, so that the total number N of
nuclear states is finite. H is then a real symmetric
(N X N) matrix.

Let 7(E) be a smooth function representing the den-
sity of levels of an actual nucleus around the energy
E. For example,»(E) might have the empirical form
(1.3). We do not assume that the eigenvalues of H,,
follow the distribution ¥(E),but we suppose the high-
energy cutoff applied to v(E) so as to make the total
number of levels

Jr(EME =N, 2.2)

the same for 7(E) as for the model Hamiltonian H,.

Consider a classical electrostatic model in which 7(E)
is the density of negative electric charge distributed
along a straight line. According to the laws of two-
dimensional electrostatics,this charge generates a
potential

u(E) = [r(\) logix — E|dx (2.3)
and an electric field
FE) =— ?;% = [r(\) — E)-ax. (2.4)

Let M be any real symmetric (¥ X N) matrix. We can
define a generalized electric field

f) = [r(0)ar, — M)-ax., (2.5)
In the space of matrices M, this field is the gradient
of a potential

f(M) =— gradu(M), (2.6)

u(M) = [r(r) log| Det(nl, — M)|da. 2.7
Although in the application to nuclear physics we are
interested in real symmetric M, it is mathematically
convenient to consider at the same time the cases in
which H, and M are either complex Hermitian or qua-
ternion-real self-adjoint matrices. The definitions
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(2.5)-(2.7) are meaningful in all three cases. As
usual (see Dysonl4) we introduce the parameter 8 to
denote the number of independent components

M’l?‘j, a=1,...,8

i,j=1,...,N, (2.8)
of each matrix element of M. Thus 8 = 1,2,4 for M

real,complex or quaternionic, respectively.

Let the matrix M undergo a Brownian motion con-
strained by the “electric field” gf(M). The change of
M during an infinitesimal time-interval 6¢ is an in-
finitesimal random matrix 6M whose first moment is
given by

(6M) = Bf(M)st, (2.9)
while the second moments are
<5M,.jfoM,,’,-> = 0, (0,,;, + 8;,0;,)0¢. (2.10)

The form of the right-hand side of Eq. (2. 10) is deter-
mined by the requirement that the Brownian process
be independent of the representation of M. The form
of Eq. (2.9) is imposed by the physical requirement
that the eigenvalues of M should be “pulled” toward
the distribution »(E) during the Brownian process. If
p(M,t) is the probability distribution of matrices M at
time ¢,the moment equations (2.9) and (2. 10) imply
the Ornstein-Uhlenbeck equation

(op/at) = div[gradp — Bpf], (2.11)
which fixes the development of p with time. Here the
operations div and grad are defined in the space of
matrices M. The parameter ¢ is a fictitious time hav-
ing nothing to do with real physical time.

We are now ready to define the Brownian ensemble
Eg. Given the model Hamiltonian H,,the level-density
7(E),and the positive real number 7,E, is defined as
the set of matvices M with probability-densityp M, 1),
where p(M,t) is the solution of (2.11) with the initial
condition

p(M,0) = 5(M— Hy). (2.12)
Thus Ej is the ensemble obtained by starting with M =
H, and allowing M to follow the Brownian process
(2.9), (2. 10) for a finite time 7.

What is the meaning of the parameter 7? If L is the

length of the energy interval over which the distribu-

tion 7(E) extends,then
D =LN"1 (2.13)

is an average spacing between levels. We have the
rough estimate

Tr(H3) ~ NLZ2, (2.14)
while for small 7,Eq. (2. 10) gives
(Tr(M— Hy)? ~ N27, (2.15)

Equations (2. 14) and (2. 15) are comparable when
T~ NDZ2. (2.16)
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For t << ND2,we are in the domain of “small pertur-
bations,” and the matrices M in E, are still concen-
trated around the starting Hamiltonian H,. For 1 >>
ND2,the memory of the initial condition is rapidly
lost, and the ensemble E; approaches the unique sta-
tionary solution of Eq. (2.11),

g(M) = p(M,®) = ¢ exp[— Bu(M)], (2.17)
with u (M) defined by Eq. (2.7). We denote by Eg the
stationary ensemble of matrices with probability-dis-~
tribution ¢(M). E is independent of H,. The ensemble
studied earlier by Leff8:9,10 and Fox and Kahnl! was
essentially identical with Eg.

To describe more precisely the approach of E; to the
limit Eg,we observe that the Ornstein—Uhlenbeck
equation (2.11) is self-adjoint with respect to the
metric

(p:") = [ba~Yp'am, (2.18)

where the integration extends over the space of ma-
trices M. For if R denotes the operator

Rp = div[gradp + pp gradu], (2.19)
then
(p,Rp") = — [[(grad(g~1p)'grad(g-p") lgdM = (p'(,R.b)-)
2.20

The eigenstates p; and eigenvalues A; of R are related
by

A, = — ([lgrad(g=1p;)| 2qdnr), (2.21)
with the normalization condition
(Pj,Pk) =.5jk' (2 223.)

Equation (2. 21) implies that all A; are strictly nega-
tive except for the unique zero eigenvalue

rg=0, bPo=4. (2. 22b)

The probability distribution of the ensemble Ej is
explicitly

bM, ) =g Y Hg) 25 exp(; TIp; (Holp (M),  (2.23)
i

We can estimate roughly the size of the smallest non-
zero A, by taking in Eq. (2. 21) a linear ansatz

p;(M) = q(M) Tr(AM) (2.24)
with A a constant matrix. Then
A, =— Tr(A2), (2. 25)

while the normalization condition (2. 22a) gives
1 ~ N-2(TrA?) [(TrM?)qdM ~ ND2(TrA2?). (2.26)
Hence the nonzero A, are all of magnitude

A~ — (NDZ)—I (2.27)

i
or gredter. Equation (2. 23) then implies that the en-
semble E; tends to the limiting distribution (2. 17)
with exponential speed as soon as 7 >> ND2.
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The physical meaning of the definition of E; may be
summarized as follows. The true Hamiltonian M of a
nucleus is derived from the model Hamiltonian H, by
an unknown perturbation. The ensemble Ej is obtain-
ed by regarding all perturbations of H, as equally
likely, subject to two restrictions, (i) the overall
strength of the perturbation is determined by the para-
meter 7,and (ii) the perturbation is biassed in such a
way as to pull the eigenvalues of M toward the observ-
ed distribution-function »(E). As 7 - ©,E, tends
rapidly to the ensemble E; which is independent of the
starting-model H, and depends only on 7(E).

3. EIGENVALUE DISTRIBUTIONS

Let P(E,,...,Ey, ) be the joint probability distribu-
tion of the eigenvalues of a matrix Min the ensemble
Eg. The Brownian process (2.9), (2. 10) induces a
Brownian motion of the eigenvalues E; with

0E) = E,— E;)"t[ot = — pow
D = B[ A ] E, " a.1)
7‘ u(E;)— 2225 loglE, — E,|, (8.2)
i<k
(0E;0E,) = 25,,06t. (3.3)

Equations (3.1)~(3. 3) imply the Ornstein-Uhlenbeck
equation
P _ a oP ow
ot = <aE * AP an)
for the joint e1genvalue distribution. As 7 — © and
Ep — Eg,the eigenvalue distribution tends to the limit-
ing form

PE,,...

(3.4)

\Ey»0) = ¢ expl— pw)
= Cgk |E,— E; lﬂ> exp(— B;u(Ej)>,

(3.5)
which has been studied in detail by Leff.10

It is convenient to normalize the joint probability dis-
tribution so that

JJPE,,..

The one- and two-level distribution functions in E,
are

+EgyTME; ... dEy =N!  (3.6)

p(E,7) = [L/N—1)1]f--
X [P(E,Eg,y... By TMEy -+ dEy  (3.7)
po(E,E' 1) = [/ (N —2)1][ -+
X [P(E,E'Eg,y...,Ey,T)dE3 "+ dEy, (3.8)
with the normalizations
JoE,7ME =N, (3.9)
Jpo(E,E', T)dE" = (N — 1)p(E, 7). (3.10)
When Eq. (3. 4) is integrated over E,, ... »E) sthe re-
sult is
W _ 3 |90 ou ‘ ' _ BY-14E’
2= |Z 4 80(Z+ pfoye, 5 e~ By,
(3.11)

We write
p(E,E') = p(E)p(E")1— y(E,E")], (3.12)

the dependence of each factor on 7 being understood.
Equations (3.9) and (3.10) then imply

Jo(E W (E,EME" = 1. (3.13)
Equation (3.11) becomes
2 du — v)
2 (2 + g2z
— 8o fo(E"WE,EVE — E)-ldE'), (3.14)

u—v = f[r) — pA)] log|A — EldA.

op/at =

with
(3.15)

All equations up to this point are exact. We now make
the approximation of assuming that the function
y(E,E"),which according to Eq. (3. 12) describes the
statistical correlation between eigenvalues at the
positions £ and E’,is a short-range quantity. Specifi-
cally, we shall neglect the second and higher moments
of y(E,E') with respect to the difference variable

(E' — E). Physically,the range within which y(E,E")
is significant may be expected to be of the order of
the mean level-spacing D. If p(E) varies appreciably
only over intervals of the order of L = ND,then the
errors involved in neglecting the second moment of
y(E,E’) should be of the order N-2. We call the ne-
glect of the second moment the iydrodyramical ap-
proximation, since the same approximation is made

in deducing the equations of classical hydrodynamics
from the Boltzmann equation.

It is convenient to transform y(E,E’) to a function of
sum and difference variables

y(E,E') = Y(s,z), (3.16)

s=3(E+E'), 2=E —E. 3.17)
The first moment vanishes,

[2Y(s,2)dz =0, (3.18)

because Y(s,z) is even in z. Equation (3. 13) becomes
Jo(E + 2)Y(E + 1z,2)dz = 1. (3.19)

When p(E + z) and Y(E + 3z,z) are expanded in a
Taylor series around the values p(E) and Y(E, z), the
terms in (3. 19) linear in z vanish by (3. 18), and the
higher terms are assumed negligible. Therefore
Eq. (3. 19) reduces to
p(E)fY(E,z)dz =1. (3.20)

We now apply the same procedure to the integral
which appears in Eq. (3. 14). The integral is

Jo(E + 2)Y(E + 1z,2)z 14z
_f( (E)+zap+ ><Y(E z)+zzg§
+.. ) zldz

= (00/0E) [ Y(E,2)dz + 3p(3/2E) [ Y (E,2)dz,
(3.21)
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the terms in 2~! and z again vanishing by symmetry,
and the higher terms by hypothesis. By virtue of
Eq. (3. 20), (3. 21) reduces to
1,100
2P 3E (3.22)

Hence the “hydrodynamic” equation (3. 14) becomes

op _ 2 1oy 0k du—v)\ _ 8 (, ¥
97T =3B <(1 - zB)gE + BPT> <BP—>,

T T oFE oF
(3.23)
with
Yy =u—uv + T logp, (3. 24)
where (u — v) is given by Eq. (3. 15),and
T =p-1-—1. (3.25)

Instead of a linear equation (3.4) for the N-level dis-
tribution-function P, we have a nonlinear equation
(3. 23) for the single-level distribution-function p.
The potential y has the form of a “free energy,” being
equal to the electrostatic energy generated by the
charge distribution (» — p),plus an entropy term
(— TS), with

S =— logp, (3.26)
and the fictitious temperature T given by Eq. (3. 25).
The case of complex Hermitian matrices (8 = 2) is
particularly simple, since then T = 0 and  is linear

in p. In the application to nuclear physics, we have
B=1land T = %.

Equation (3.23) takes a simpler appearance when ex-
pressed in terms of Lagrangian rather than Eulerian
variables. Let E(, 1) be defined as a function of the
continuous variable n by

JED pdE = n, (3.27)
Thus, for integer »,E(n, ) is roughly the mean posi-
tion in the ensemble E; of the nth smallest eigenvalue
of M. The Lagrangian form of Eq. (3.23) is

dE W

Er“=— aE-

(3.28)
The derivative on the left of Eq. (3.28) is taken at fix-
ed n,that on the right at fixed 7. In terms of Lagran-
gian variables,

Y(E) = u(E)— [log|E(n) — Eldn — T 1og<%n€>. (3.29)
From Eq.(3.23) or (3.28) it follows that the level-

density p for the stationary ensemble Eg is character-
ized by

Y(E) = const, (3.30)

The stationary p thus satisfies the equation
p(E) =c expl~ T2 [[r(\) — p()] logir — E|dr}.
(3. 31a)

This equation has appeared before in the calculation
of the asymptotic form of the level-spacing distribu-
tion for large spacings (see Dysonl3). Recently

Mehtal® and Widom17 have checked the accuracy of
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Eq. (3. 31a) in the level-spacing application by a more
exact analysis. They found that the error is actually
not,as claimed by Dyson,15 of the order N-2,but is
proportional to (N-2 logN). It is likely that the hydro-
dynamical approximation which led to Eq. (3. 23) will
also in general introduce errors of order (N-2 log N).

For the application to nuclear physics,a precision of
order (N~2 logN) goes far beyond what is required.
Statistical fluctuations and imperfections in the experi-
mental data make it meaningless to retain even terms
of order (N~1 logN) inthetheory. Butthetroublesome
nonlinear term (T logp) in Eq. (3. 23)isinfact of order
{N~1 logN) relative to u and v. It is therefore suffici-
ently accurate to drop this term and to take for the
equation defining the level-density p in the ensemble
Eg,

d d

L =Z {8 [[r0) — p]E —1)Tdr}.  (3.31b)
In this approximation the level-density of the station-
ary ensemble E; becomes simply

p(E) = 7(E). (3.32)
The ensemble Eg thus satisfies requirement (1) of Sec.
1 by predicting a global level-density p(E) identical
with the observed distribution »(E).

From Eq. (3. 31b) it is easy to see how the level-density
p(E, T) of the ensemble E, tends to the limit 7(E) as
7 — «. Firstofall,if we choose the starting Hamilton-
ian H to have precisely the observed level-density
v(E),then Eq. (3. 31b) implies
p(E,7) = r(E) (3.33)
for all 7. In this case,requirement (1) is fulfilled
exactly by E;. In practice we shall generally choose a
model H, which has a level density not identical with
7{(E) but reasonably close to it. Then the deviation

S(E,T) = p(E, T) — 7(E) (3.34)
satisfies approximately the linear equation

3% _ 3 — E}1

o =35 BrE) [oW) — Eyan], (3. 35)

which can be solved by an eigenfunction expansion
similar to Eq. (2. 23). Instead of solving Eq. (3. 35)
exactly,we here examine the qualitative behavior of
§(E, 7). Consider arange of energy E small compared
with L,so that 7(E) can be considered constant, say
¥(E) = D1 where D is the local mean level spacing.
Within this range,the local behavior of §(E, 7) can be
represented as a superposition of Fourier components

3(E, ) ~ exp(ikE — y71), (3.36)
with wavelengths mD,where
m = (2n/|k\D). (3.37)

Equation (3. 35) then gives the dispersion relation
y = (Bnlk|/D) = 2n28/mD?2). (3.38)

So the component of 6 with wavelength mD dies away
exponentially with the characteristic lifetime
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t = (mD2/2u28). (3.39)
From Eq. (3. 39) we see in detail how the level-density
p(E, 1) conforms locally to the prescribed density r(F)
on various time scales. After a time 7 = mDZ,p has
adjusted itself to »r everywhere over energy intervals
of length mD. Beginning at T = D2,the correlations
between neighbouring levels are established. Succes-
sively longer-range adjustments are made as 7 in-
creases,until for 7 > ND2 the global level distribution
approaches r(E) over the whole range of E,and the
ensemble E; satisfies requirement (1) everywhere.

It was proved in Sec. 2 that not only the one-level dis-
tribution p but the entire ensemble E; tends to its
limiting form Eg when 7 > ND2. Itistherefore reason-
able to make the conjecture that all the local many-
level correlations within any group of m conseculive
levels of a malrix in Eg lend lo lhe corrvesponding
correlations in the stationary ensemble Eg as soon as
T > mD2. We have proved this statement for the one-
level distribution p(E, 1) for any value of m,and for
all the multiple correlations when m = N. Physical
intuition suggests that the statement should be true in
general, since the process of “thermal equilibrization”
of the one-level distribution p within a given energy
interval must go hand-in-hand with the equilibrization
of the higher-order correlations within the same in~
terval. The precise form of the many-level correla-
tions in Eg will be determined in the following section.

4. EIGENVALUE CORRELATIONS

Mehtal8 has calculated analytically the correlation
functions of all orders for the eigenvalues of a matrix
in the Wigner ensemble E;. His results take a simp-
ler form in the limit as the total number of eigen-
values N tends to infinity. For any integer n < N,let

P(E,...,E))dE, """ dE, 4.1)
be the probability for finding an eigenvalue in each of
the infinitesimal intervals (E,,E, +dE,)--- (E ,E, +
dE,),irrespective of the positions of the remaining
levels. This P, is the nth-order correlation function
for the ensemble in question. Suppose now that the
mean level spacing at some place E is

D= [PI(E)]—I. (4.2)
As N — «,D will generally tend to zero. We suppose
that the » variables (E,,...,E,) are all chosen in the
neighbourhood of E,so that

E;=E +Dx;, Jj=1,...,n (4.3)
We keep the quantities x, fixed as N - », while E may
vary and D tends to zero according to Eq. (4.2). Then
Mehta proved that the limit

Y,,(xl,...,x,,)=},£m[D"P”(E1,...,En)] (4.4)

exists and is independent of E. The functions Y, are
called the local correlation functions for the infinite
Wigner ensemble. If we know all the Y, for a particu-
lar ensemble of matrices,then we have a complete
description of the local statistical behavior of the se-
quence of eigenvalues of matrices in the ensemble as
N — oo,

Mehta!8 found the explicit form of Y for the Wigner
ensemble. Y, is an nth order Pfaffian or quaternion
determinant,

Y,(q,. .. 4.5)

where ¢, is a quaternion with the [2 x 2] matrix re-
presentation

,X,I) =Q dEt(ol(xi - xj)),

o= Lss(g)— c) Dss((rr))} .o
sr) = (sin(nr)/a7), 4.7)
Dsr) = B0, 4.8)
1s) = [ strwar’, 4.9)
er) = L (4.10)

|71

The meaning of the notation @ det is fully explained in
Dyson,1? where Dyson had shown that the identical set
of local correlation-functions Y, appeared in a differ-
ent ensemble (the so-called circular orthogonal en-
semble of unitary matrices), in the limit when the
order of the matrices tends to infinity.

It is plausible that the local statistical behavior of an
eigenvalue sequence should become independent of the
global eigenvalue distribution when the total number
of eigenvalues becomes large. We therefore conjec-
ture that the behavior which Mehta found for the Wig~
ner ensemble and Dyson found for the circular ensem-
ble holds equally for the ensembles E, and Eg, indepen~
dently of the level-density function »(E). Specifically,
we conjecture that in the stationary ensemble E; with
B = 1,the limit (4.4) exists and is equal to (4.5) for
any choice of »(E). We conjecture that in the Brown-
ian ensemble E; with 8 = 1,the same limit exists with
the same value, provided that the parameter 7 defining
E; varies with N in such a way that

(1/D2) > 0w as N — o, (4.11)
The condition (4.11) is weak and is easily satisfied,
for example by taking 7 constant. According to Eq.
(3. 39),the condition (4.11) should be sufficient to en-
sure that eigenvalue correlations come to statistical
equilibrium over distances larger than mD for any
finite value of m.

The conjectured local correlation functions in E, are
independent of H,7(E),and 7,but they are not indepen-
dent of 8. For 8 = 2 and 4, a different set of functions
replaces (4.5). Namely,for 8 = 2,

Y, xq..00%,) =det(s(xi—xj)) (4.12)

is an ordinary (n x n) determinant, while for 8 = {,

Y,(q,...,%,) = Q detlo, (x; — x)) (4.13)
is a quaternion determinant with
2 Ds(2r
og(r) = | S DS )] . (4.14)
Is(2r) s(27)

Equations (4.12) and (4.14) were proved by Mehtal8
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for the ensembles which are analogous to the Wigner
ensemble £ with 8 = 2 and 4, namely the Gaussian en-
sembles of matrices whose elements are complex or
quaternion real, respectively. The same Y, are pre-

sumably valid for the ensembles £, and Eg,when

‘3 = 2, 4.

The mathematical treatment of eigenvalue correlations
is always simplest in the case 8 = 2. For this case,
working with the ensemble Eg and an arbitrary distri-
bution-function r(£), Fox and Kahn!l proved that the
limit (1. 4) exists and has the value (4. 12). They ob-
tained an explicit formula for the correlation functions
in the ensemble E; for finite N when ,; = 2,namely

PAE,,...,E) = det[KN(E,V,I;‘j)], (4. 15)
where
N
Kylx,v) =f(x)21p,¢t)p, (¥), (4.16)
3=

and the p,(x) are orthogonal polynomials defined by

Jp,6p &) ()ix =6, (4.17)
with the weight-function
flx) = exp[— Bu(x)] (4.18)

and u(x) given by Eq. (2. 3). The existence and value
of the limit (4. 4) then follows from known theorems
on the behavior of the kernel K(x,y) for large N.

Exact expressions for the correlation functions, ana-
logous to Eq. (4. 15), exist also for the ensemble Eg in
the cases 8 = 1,8 = 4. Consider first the case g = 1.
We introduce the family of skew-orthogonal polyno-
mials (1}(x) defined by

) 4,0, (VY (et — y)dxdy = Z,,,  (4.19)

where Z, is the canonical antisymmetric matrix

j +k +1=0 (mod4) only.
(4. 20)

ij = Oj‘l,lz - 6»1,] ’
We write

00) =fW)a, (), ¥,x) = Jelx — 3)o,(vMy,

(4.21)

and define the kernels
Lx,y) =22Z,0,0W,(y), (4.22)
L1, y) == 25Z,,¥,;6)¢,(9), (4.23)
Ax,y) =232 ,0,(€)9,(y), (4.24)
Alx,y) =22Z,,¥,;00,(), (4.25)
€lx,y) =elx — y), (4.26)

the sums over j, % in Eqgs. (4. 22)—(4. 25) going from
1 to N. When N is even, we define a quaternion kernel
by the (2 X 2) matrix representation

) = L —A}
Qlx,y —[A#G ]’
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(4.27)

and the correlation-functions in Es for 8 =1 are
given by

P(E,,...,E)=0Q det[Q(E,-,EJ)]. (4. 28)
When N is odd, the last skew-orthogonal polynomial
gy (v) is unpaired,and its normalization is left arbi-

trary by Eq. (4.19). In this case we supplement Eq.
(4. 19) by the extra condition

Ja,6Y )y =6, (4.29)
and introduce the additional kernels

M, y) =oylx),  M'x,v) =@, (y), (4.30)

pulo,v) =y lx),  utlv,y) =yy(y). (4.31)

The result (4.28) then still holds if we define @ for
B = I,N Odd,by

L+ M — A

Lt + A7

Q(X,_\') = [
A—e+pu—put

J, (4.32)

instead of by (4. 27).

When 38 = 4, we require a different family of skew-
orthogonal polynomials 7,(x) defined by

J7wet — 9)r, 07y (y) — 7 )7, (»xdy = Z,,,,

(4.33)
instead of Eq. (4.19). Instead of Eq. (4. 21), we take

9,0) =fx)r, (), ¥,(x) = Jelr — y)r;(y)dy.  (4.34)

The kernels L,LT,x,and A are defined as before by
Egs. (4. 22)~ (4. 25),but with the summations now run-
ning from 1 to 2V, The correlation functions for g = 4
are then given by Eq. (4. 28) with

L —2
Q(x,}’)=[A LT:I

We omit here the proofs of the results (4.27), (4. 28),
(4. 32),and (4.35). The proofs follow precisely the
lines laid down in Dyson!? and Mehta,18 where the
corresponding results were proved for the circular
and Gaussian ensembles. The results are exhibited
here in order to demonstrate that the ensemble Eg is
mathematically tractable, in the sense that all eigen-
value correlation functions can be precisely calculat-
ed in analytic form. This is to justify our claim that
the ensemble E; satisfies item (4) in the list of re-
quirements stated in Sec. 1.

(4.35)

It remains to be proved that the correlation functions
(4. 28) tend as N — ® to the forms (4.5) and (4. 14)
which are valid for the circular and Gaussian ensem-
bles with 8 = 1,4. To prove this, we require an exten-
sion of some standard results concerning orthogonal
polynomials to the case of skew-orthogonal polyno-
mials. More generally, in order to make the explicit
formulas of this section useful,we need to develop the
theory of skew-orthogonal polynomials until it be-
comes a working tool as handy as the existing theory
of orthogonal polynomials. We intend to come back to
this subject in a future publication.

We have also left unproven our assertion that the en-
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semble E, in the limit (4.11) has the same universal
local correlatmn functions given by Eq. (4.5), (4.12),
and (4.13) in the cases g = 1,2,4,respectively. This
assertion was strictly proved only for the stationary
ensemble Eg with B = 2. For Eg in the cases g = 1,4,
the assertion is made mathematically plausible by the
existence of the explicit formula (4. 28) for the corre-
lation functions. For the general Brownian ensemble
Eg,it remains to be seen whether any similarly expli-
cit formula for the correlation functions can be found.

Failing an exact formula, one could probably develop
a sufficiently accurate theory of the behavior of the
correlation functions of the Brownian ensemble for
large N by following the “hydrodynamical” approxima-
tion scheme which was used in Sec. 3 to study the be-
havior of the one-level distribution function p(E, 7).

Note added in proof: The author has received a
preprint, “Exact Results for a Quantum Many-body
Problem in One Dimension. II,” from Dr. B, Suther-
land. Sutherland has found the exact eigenvalues and
eigenfunctions of the operator (2.19) for the Gaussian
and circular ensembles. It remains to be seen
whether Sutherland's method also works for the
ensemble Eg.
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The current vector field associated with a one-parameter group of transformations of a classical field is

defined in a coordinate-free way.
1. INTRODUCTION

The aim of this paper is to provide a coordinate-
free definition in the language of manifold and differ-
ential-operator theoryls2:3 for the “current” vector-
field associated with a one-parameter group of trans-
formations of a “classical” field. Our approach will
be somewhat different from that used by Trautman4,
Such a formula should be useful for proving general
results about the relations between “fields” and
“currents,” in both classical and quantum field theor~
ies,although in this paper the goal is the more mod-~
est one of showing that such a formula exists.

We will now describe the differential-geometric sett-
ing for the formula. Let E and M be manifolds, with
n: E = M a map that defines E as a local product
fiber space over M. (In the physical applications, M
will be R4, space~time, and the fibers of E will re-
present the “values” of the field,i.e.,a cross-section
map y: M— E will represent a “f1e1d” ) Let JY(E) be
the bundle of one-jets3 of cross sections of E,and let
L: JY(EY > R be a real-valued function on J1(E) (L
should be regarded as the “Lagrangian” of the
field2,3,) Let X be a vector field (in the sense of mani-

fold theoryl) on E that is “projectable” under 7,i.e.,
there is a vector field X,, on M such that:

T (X () = X(@*(f))

for all fe F(M).

[We adopt the differential-geometric nota.tlons of
Ref.1. In particular, F(M) denotes the C™, real-
valued functions on M and #*: F(M) » F(E) denotes
the pull-back map on functions defined by 7.] Such an
X generates a one-parameter group of diffeomor-
phisms of E that maps fibers into fibers, hence, acts
on the space of cross sections of the fiber space E,
i.e.,physically, the group acts on the “classical
fields.” Condition (1.1) can also be interpreted group
theoretically. It is the condition that 7 intertwine the
one-parameter group of diffeomorphisms generated
by X and X, on E and M.

Suppose now that L,a volume element form “dp” on
M,and a cross section map y: M — E,are fixed. We
will then show that to each vector field X on E that
satisfies (1.1) there is a vector field ¥ on M that
may be regarded as the “current” associated with X.

(1.1)
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be somewhat different from that used by Trautman4,
Such a formula should be useful for proving general
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present the “values” of the field,i.e.,a cross-section
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the bundle of one-jets3 of cross sections of E,and let
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fold theoryl) on E that is “projectable” under 7,i.e.,
there is a vector field X,, on M such that:

T (X () = X(@*(f))

for all fe F(M).

[We adopt the differential-geometric nota.tlons of
Ref.1. In particular, F(M) denotes the C™, real-
valued functions on M and #*: F(M) » F(E) denotes
the pull-back map on functions defined by 7.] Such an
X generates a one-parameter group of diffeomor-
phisms of E that maps fibers into fibers, hence, acts
on the space of cross sections of the fiber space E,
i.e.,physically, the group acts on the “classical
fields.” Condition (1.1) can also be interpreted group
theoretically. It is the condition that 7 intertwine the
one-parameter group of diffeomorphisms generated
by X and X, on E and M.

Suppose now that L,a volume element form “dp” on
M,and a cross section map y: M — E,are fixed. We
will then show that to each vector field X on E that
satisfies (1.1) there is a vector field ¥ on M that
may be regarded as the “current” associated with X.

(1.1)

J.Math. Phys., Vol.13,No. 1, January 1972



98 ROBERT HERMANN

We will give an explicit but coordinate free formula
for Y that will facilitate the understanding of its
mathematical and physical properties.

2. THE CURRENT ASSOCIATED WITH A VECTOR
FIELD

Let V(E,M) denocte the vector fields on E that are
projectable under 7,i.e., satisfy condition (1.1). Let
I'(E) denote the space of all cross-section maps

M — E, Let J1(E) denote the space of 1-jets of cross
sections.?® Then, denoting by 7! the projection map

J YE)— M, it defines J 1(£) as a fiber space over M.
Given y € T’ (E),one can define? a cross-section map
jl(y): M = JY(E) called the 1-jet of y.

There is a Lie algebra homomorphism V(E,M) —
WJ 1(E), M), denoted by X— X1;the vector field X1 on
JYE) is called the first ovder prolongation of X, We
will give an explicit formula for X1 later on. Let
“dp” denote a fixed volume element differential form
onM,i.e., “dp” is an everywhere nonzero m-differ-
ential formon M (m = dim M). Let L: JY(E) 2 R be
a Lagrangian,and let w be the following M form on
JYUE):

w= Lal*dp). (2.1)
LetX e V(E,M),andycT(E). Given fe F(M),letfX de~
note the vector field 7*(f) X in V(E,M). Let (f X)? be
the first-order prolongation of this vector field to be
a vector field on J1(E). Now, define ¥ by the follow-
ing formula:

Y(H)dp = ) (FXOHD) — fi10)* (X w)).

[(fX)Y(w) denotes the Lie derivativel of the form w on
JL(E) by the vector field (fX)1.]

It should be clear that Y defined by 2.2 is a linear
map F(M)— F(M). We will show that it is indeed a
vector field by calculating its value in a local co-
ordinate system. Suppose (v ), 0= p,v =m —1,
are functions on M that form a coordinate system

for M. We suppose that E is a product M X N of M
with a manifold N. Let (¢,), 1= a,b =n,be coordin-
ates of N, Then, (x " ¢,) defines a coordinate system
for E. Suppose a cross sectiony: M — E is deter-
mined by functions ¢,(x). There are functions ¢,, on
JY(E) such that

(2.2)

T (b,,) = a—z— (@, ).

Then, the functions (x,, ¢,, ¢,,) form a coordinate
system for J1(E). The Lagrangian L becomes a func-
tion L(x, ¢, ¢,,) of these variables. Let:

dp =dxga... ax 4,

bk =L
Lau_a(zi g

PR S S

e a¢a ? ¢ axp e a¢4p
Suppose X = V(E,M) is of the following form:
X=A,x)0, +A,lx,¢)0,. (2.3)
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(It is readily seen that such an X admits a descrip-
tion of this form.) Then, one can prove that X1, its
prolongation, is of the following form:

x1 =A“8u +A,0, + [aN(Aa) - ¢,,0,4,)

av

+ [ab(Aa)ql)b p]aay

We can now work out Y, given by (2. 2) in these co-
ordinates. If X ¢ V(E,M) is of form (2. 3), then

(2.4)

XYw) = XY L)dp + LX (dp)
=[A,L, + AL, + (04, ~¢,3,4,)
+ 0, (A,)¢, )L, Jdp + L2 (A )dp.
Thus, for fec F(M),

(FxX)H w) = F(XYHw))
= [, (NA, ~ ¢,,9,(NA)L,, + L3 (A, ldp.

Then, we see finally that (2. 2) takes the following form:

Y= [ AL, — ¢,4,L,, + LA)],. (2.5)
In particular, we see that Y, considered as a map:
F(M) - F(M) is a first order linear differential oper-
ator,i.e.,a vector field in V(M). The reader will
readily verify that, modulo a changed notation and
interpretation, (2. 4) is indeed the formula for a
“current” generated by a group of transformations

on the fields that is to be found in all quantum field
theory books in one form or another.

3. CONSERVATION PROPERTIES OF CURRENTS

Recalll how the divergence of a vector field ¥ on M
is defined:

Y(dp) = div(Y)dp.

Let us continue with the notations and coordinate
systems used in Sec. 2. Then, one readily obtains
the following formula:

If Y =B,(x)0,,then divy = 9,(B,). 3.1
Our goal now is to calculate the divergence of the
current vector field Y,given by formula (2.5) in
case the cross-section map y: M = E is an extremal
of the Lagrangian L,i.e., satisfies the following
Euler equations:

3, (L, ) = jt)*(L,). (3.2)
From 2.4,we see that
B“=j1(y)*(AaLa“—¢auA,,Lau +LAu). (3.3)

With X defined by (2.3) and X,, by (1.1), we have

Xy =4,0,; (3.4)
hence
divX = a”(Au). (3.5)

Also, using (2.4),
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XWLy=A,L,+ AL, + [au(Aa) — (p”Bp(Au)
+8,(A)0p,1L,,;
hence
XL =16)*A,L, + A,L,)
+ 0, (N AN *(L,,) —9,(¢,)9,(4,).

Combining (3.2),(3.3),and (3.6),we have

(3.6)

3,(B,) = 3, (1 )* A NI WXL, ) + i1 W*A,L,)
—2,3,(0,)4,7 )" (L,,) — 2,(6,)3,(4,)
x JU)*(L, ) — 3,(¢,)4, i )% (L,)
+ [ (L,) +i1)* (L,)0,4,
+71)*(L,,)8,0,0,]4,
+ (L3, (A,) = jHUp*[XUL) + 9,(4,)L].

Hence,we have

divY = j1(,)*[X1(L) + divX, L] (3.7
or,since d(Y 1 p) =Y{dp) = div(Y)dp,
d(Y Ldp) = j 1y * (XY (w)). (3.8)

(3.8) is the main formula for the study of the connec-
tion between “conserved currents” and “symmetries”
of L. Let us say that X is an infinitesimal symmelry

of the Lagvangian L if

0 = XY (w) = XY (La*(dp)). (3.9)
Let us say that a vector field Y on M is a conserved
curvent if
d(y _ldp) = 0. (3.10)
I (3.10) is satisfied, and if N is a submanifold of M
of one lower dimension, one can set
f,N,Y)= [ ¥ _ldp. (3.11)
N
Then, the conservation condition (3.10) guarantees
using Stokes' formulal that (3.11) really does not
depend on the choice of the “Cauchy data” subman-
ifold N, hence a define a real valued function
y = f(v, N, Y) in the space of all extremal cross sec-
tions v; this function then defines what one might call
a “classical conserved observable.” (In the quantum
field theoretic version of these ideas, (3.11) is an
operator in Hilbert space which commutes with the
Hamiltonian,i.e.,a “conserved charge.”) Let us
then restate formula (3. 8) in the following way:

Theovem 1: I X is a vector field on E that gener-
ates an infinitesimal symmetry of the Lagrangian L,
then formula (2. 2) defines a vector field ¥ on M that
generates a conserved current.
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We consider irrotational dust solutions of the Einstein equations. We define “velocity-dominated” singularities
of these solutions. We show that a velocity-dominated singularity can be considered as a three-dimensional
manifold with an invariantly and uniquely defined inner metric tensor, extrinsic curvature tensor, and scalar
bang time function. We compute this structure for a variety of known exact models. The structure of the singu-
larity uniquely determines the solution in a certain class of spatially inhomogeneous models. We briefly dis-
cuss the b boundary (Schmidt boundary). In an appendix we generalize conformal transformations to “stretch”
transformations and calculate the curvature form of a stretched metric.

I. INTRODUCTION
A. Motivation

If one thinks gravity may play a dominant role even
near the big bang, one would like an invariant charac-
terization of the structure of the cosmological singu-
larity for at least two reasons.

First, the present lumps in the universe may be due
to conditions holding so early that we should attribute
these conditionsto the singularity itself in our models.
Then one could perhaps see what conditions on the
singularity give reasonable lumps. Perhaps one
could even make initial conditions part of physics by
postulating field equations for the intrinsic structure.

Second, it is at least conceivable that the big bang is
still going on in isolated parts of the universe.l Let
us consider an irrotational, hydrodynamic, general
relativistic model, so that cosmological time is well
defined. The exact spherically symmetric Tolman-
Bondi dust models? and linearized perturbations of
Robertson~Walker models both indicate that it would
be very artificial to require that the big bang went off
simultaneously in the past of each matter world line.
We might reasonably require that the singularity be
in some sense spacelike, but it turns out that this is a
very mild restriction. In fact there are Tolman-
Bondi models which are homogeneous (throughout this
paper “homogeneous” means spatially homogeneous )
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bang time function. We compute this structure for a variety of known exact models. The structure of the singu-
larity uniquely determines the solution in a certain class of spatially inhomogeneous models. We briefly dis-
cuss the b boundary (Schmidt boundary). In an appendix we generalize conformal transformations to “stretch”
transformations and calculate the curvature form of a stretched metric.

I. INTRODUCTION
A. Motivation

If one thinks gravity may play a dominant role even
near the big bang, one would like an invariant charac-
terization of the structure of the cosmological singu-
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First, the present lumps in the universe may be due
to conditions holding so early that we should attribute
these conditionsto the singularity itself in our models.
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singularity give reasonable lumps. Perhaps one
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still going on in isolated parts of the universe.l Let
us consider an irrotational, hydrodynamic, general
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Bondi dust models? and linearized perturbations of
Robertson~Walker models both indicate that it would
be very artificial to require that the big bang went off
simultaneously in the past of each matter world line.
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in some sense spacelike, but it turns out that this is a
very mild restriction. In fact there are Tolman-
Bondi models which are homogeneous (throughout this
paper “homogeneous” means spatially homogeneous )
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and isotropic far from the “center,” have a singu-
larity not reachable by future pointing timelike geo-
desics, but have a big bang which near the center is
still going off (Fig. 1). The central singularities,
assuming a reasonable opacity law, appear very
small from the outside.3 If these models can be
generalized to more realistic equations of state, the
result would be possible models for quasars or per-
haps even galactic centers.

To try to analyze either possibility one really needs
to assign an invariant structure to the singularity.
The Tolman~Bondi singularities discussed do have
two obvious kinds of structure: the rate at which
baryons are being fed into the nonsingular parts of
the universe, and the time at which a singularity
appears on a particular matter line. How about other
models?

The main purpose of this paper is to obtain the struc-
ture for one special case: irrotational dust with a
velocity-dominated singularity.

B. OQutline

In Sec, I we define a velocity-dominated singularity.
Friedmann models are velocity-dominated because
the effects of spatial curvature, which are determined
by k = 1 or 0, are negligible at early times. One can
explicitly integrate the Einstein evolution equations to
find the general form of the metric near a velocity-
dominated singularity. Some functions obtained by
the integration are identified as the positive definite
metric, extrinsic curvature tensor, and scalar bang
time of a three-dimensional manifold identified as the
singularity. We show that this structure is uniquely
and invariantly defined. Finally we discuss the con-
straints placed on this structure by the constraint
equations and the requirement that our approximation
be self-consistent.

In Sec.III we work out the metric, extrinsic curvature,
and bang time for a variety of exact solutions. The
largest known class of exact solutions obeys our velo-
city-dominated assumption. In this class the struc-
ture of the singularity uniquely determines the model.
In Sec.IV we give some preliminary results on the b
boundary.4 In Sec.V we give a short summary. In an
appendix we analyze metrics obtained from some
other metric by stretching along N orthonormal
directions with scalar functions. We use the Cartan
formalism to calculate the curvature form. The rela-

«

Fig. 1. “Bump” singularity at the central region of 2 loosely
bound (B 0) Tolman~-Bondi model. The singularity is of the
3,3, — 1) type in the 4¢, 3 # 0 region. As of 53— 0,the singu-
larity becomes Friedman-like. There should in general be a
(1, 0, 0) singularity beneath the bump (see Fig. 2). But this
does not influence our region of interest (above the singu-
larity) here.

| r=const.
dustflowlines

!
|
|

Frisdman
region ,t=const

r=0
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tions derived include those for conformally related
metrics and those for diagonalizable metrics as
special cases,

Many of our methods are essentially due to Misner.5
Formally, our results are similar to those given in a
classic paper by Lifshitz and Khalatnikov.6

II. THE STRUCTURE OF THE SINGULARITY

We work in a coordinate patch of a C* manifold
throughout. A solution of the Einstein dust equations
Gl =—putu, (uv=0-++ 3, utu, =— 1) is called
1rrotat1ona1 1f u. = u", . In such models there exist

“comoving geodes1c normal” coordinates charac-
terized by7

ds2 = — diZ + g, (x¢, dx?dx®, a,b=1+-- 3,
uk =64, (1)
The only allowed transformations are
x'8 = x'e(x?), (22)
t' = t + const. (2b)

We shall denote covariant differentiation within the
hypersurfaces ¢ = const with respect to g,,(x¢, const)
by a vertical stroke, the three-dimensional Einstein
tensor by 3G¢, and the second fundamental form (the
field “velocity”) by Kg:

i agab

2 of
We let @ = + [det(g,,)]¥2. Then the “evolution equa-
tions” are (3) and?

0

=Ks5g, . 3)

~Gg=—3Gg + (5 +K)

Lg
— 5?[‘%‘ a—a- + —12£>K + %LZ:] =0, (4)

~~

Here

K=K; Lj=Kj—36iK,
Equation (5) implies L2 = 0, L2 =0, K = 8lna/?¢.
The “constraint equations” are

6y =Ky, — K, =0 6)

= 3(2 3G + L2 — 2K?2) determines p. Assuming
(33 we find that the evolution equatjons (4) are the
Euler-Lagrange equations of J = f ad4x (L2 — 2K2
— 2 3G). Suppose a metric obeys just the evolution
equations (3) and (4). Then the Bianchi identities
Gh.y = 0 give, after a short calculation,

GQ = ¢GQo7 L. (1)

Here (GY(x9) is a function of integration, independent
of ¢, but in general a function of x¢. We shall use the
left subscript 0 in this manner throughout. From (7)
we see that (3), (4), and (6) are involutive. Similarly,
(3), (4), and (6) imply

G§ = ,G3a~1. ®
In the approximations which follow, it will be conveni-

ent to replace the evolution equations by integro-dif-
ferential equations, a trick familiar in linear theories.
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Suppose for a moment 3G¢ and o are, miraculously,
known. Then the trace-free part of (4) can be inte-
grated immediately:

~Lg= a-1<0Mg + f3Hga> . 9
Here f f means

t
14 fed ’
Lo Ao, 1),
with x¢ fixed: ;M% transforms as a tensor density
under (2a).

If we now consider L¢ as known and if
Lg(t', xe)Lb(t, x¢) = Lg(t, xe)Lb(t', x°¢),

the trace-free part of (3) can likewise be integrated:
fa = %31, exp(2 [ Lg), (10)

where A, exp(B§) means A, [0 + B§BF2N™L+--L
In general, the exponential term in (10) must be re-
placed by an ordered product. Finally, combining the
traces of (3) and (4) yields the following integro-dif-
ferential equation for o:

220 1202
A2 2 ot 2

A solution of (11) substituted into (9) and (10) then
converts (10) into a covariant, but very messy, func~
tional equation for g,,, with Einstein tensor 3G¢.

By Raychaudhuri's theorem p(x¢, #) > 0 implies p = ©
for some f = t(x¢). We call 4t the bang time and
assume throughout that ;¢ is'a C* function of x¢;

of transforms as a scalar under (2a). Thus 7 = ;#x9)
becomes a three-dimensional C* differential mani-
fold which we call the “singularity.” Now the essen-
tial idea suggested by the Friedmann models is to
drop the 3G¢ terms from (9)-(11) and use the resuit
as a first approximation to g,, near the singularity.
To make this idea somewhat more precise, we use the
following definition.

Let 2_,, with corresponding K ¢ and bang-time function
ol = pf be an exact dust solution. Suppose there is a
real g,, which near ,7 obeys

(@) 8,5 = &, signature (g, ,) =+ 3.
(b) g,, obeys (3) and
K

2 _L.T2/0 N 2] .
<8f+K)Lg_5g[—3-(a—f+-2—>K+ 2, (4)
(c) There is some component, say u, of g,, such that
for xc fixed and 1 41,

(Kg — Ke)KEDH™2 > 0,

N 12
(846 —&,5)u"1 — 0. 42
Then we call g,, and its singularity “velocity domina-
ted” and call g,, the first approximation. (4’) implies
that both sides are separately zero and that we can
set 3G¢ = 0 in (9)-(11). Condition (a) may or may not
be independent of (b) and (c). Not every solution of
(3) and (4') is a first approximation since (6),p > 0,

and the consistency condition
ng(KﬁKg)-l -0 (13)

place restrictions on g,,. The definition is invariant
under the transformations (2).

To find a general first approximation, we must now
set 3G¢ = 0 in (9)~(11), analyze uniqueness from (12),
analyze (6) and (13), and finally estimate the order of
magnitude of the correction terms., With 3G¢ = 0 in
{(9)-(11) various cases arise. In each case there is an
exact vacuum or dust solution which coincides with
our first approximation for suitably adjusted integra--
tion functions, and we name the various cases by the
corresponding exact solution.

The Heckmann-Schiicking~like8 solution of (9)-(11),
with 3G¢ = 0,is

8ab = 08 eXP2{pK§[In(t — o1) — In(t — 4]
+3ogIn(t — o)), > ot > gt >— 0,

1 1 -
©Kg = oK‘»f(r:;r;:—;,T) +385(t~ o)7L,

a =qa(t— Dt~ 4t). (14)
Here (K¢ is restricted by the famous conditioné

oK§oKb =1 =Ko, (15)
All other cases can be generated from (14). If ,¢ = ¢/
in (15) we get the Friedmann-like solution
85 = 08as (L~ oD¥/30 K§ = S08(t— o 1)1,

a=qa(t— o2, (16)
If we write

0820 = 82 eXP{(K§ — 368) In(— o)}

in (15) and take the limit '~ — o, with og/,,, oK
fixed, we get (dropping the prime) the Kasner-like
solution:

8ab = 0Zqp €XP[oKE In(t — 4 1)],
Kg = oKg(t— 1)1, oa=q0(@—48), A7)
with (K¢ still subject to (15). Near ¢ = 4¢, (17) and
(14) are very similar, but (14) contains the extra
arbitrary function 4#'. Finally,a similar limit gives
the flatlike case
Zos = ofars  KE =0, (18)
Equation (15) or its specializations and condition (a)
of our definition imply that the Jordan normal form of
oK§ is diagonal and real; that is, ,K¢ can be diagona-
lized at any one point of the singularity by a real co-
ordinate transformation. We then find that ,¢,, =
ofbar 58N, =+ 3, oKyp = 08¢ oK § = oKp 4 and that
08,5 and oK, transform as tensors under (2a). Equa-
tions (12) and (14)-(18) now imply that two first
approximations to the same exact metric can differ at
most by having different functions ¢’ in the range
ol > ot = — ®©. We expect, but have not proved, that
ol is unique as well. In any case, ,g,, and ,K,, are
uniquely and invariantly defined. We call them the
metric and extrinsic curvature of the singularity.
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We next analyze (6) and (13), then estimate correction
terms. There are exact solutions which have one be-
havior on open regions of the singularity and another
on the boundaries of these regions. However, for sim-
plicity we confine our attention to an open region such
that only one of the forms (14) and (16)~(18) holds
everywhere,

In the flatlike case we then get from (13) 3G¢ = 0 and
that (6) is an identity. Then g,, is regular. Thus,
this case is not of interest, except perhaps on sub-
manifolds of the singularity.

In the Friedmannlike case (16) we have

-2
T3t —o1)2 %Y

in agreement with (7). If we assume (I'g, — l"g )
(t— o8~ 0, then (6), (12), (16), and (19) glve

oly =0. (20)

With 4¢ = const and oG § the Einstein tensor of the
singularity, one now gets

3G = oGt — oty 43, (21)

Thus (13) is an identity. Substituting (21) back into
(9)~(11) then gives a second approximation. A short
calculation shows that the metric g,, correct to
second order obeys (12). Thus, one has a systematic
approximation scheme. Whether the approximations
always converge is not known; examples show that
they do converge for some models more general than
the Friedmann models. Since 3¢’ = ;¢ = const, this
Friedmann-like case is completely equivalent to the
isotropic case of Lifshitz and Khalatnikov.6

The an~'" _ .. .ue Heckmann-Schiicking-like case is
more cumbersome. Let -ri(xb) be the unit eigenvec-
tors of K¢ (A,B +-+ = 1--- 3;capital indices are not
subjected to the summation convention):

Kg,— Ky (19)

Kg14% = Py1%, 757} 0fas = Oapr (22)
Then (22) implies
oKE =24 PaTaoTh (23)

and (16) reads
2.P,=1=23,P% (24)

(24) implies that we can order the P, by the conven-
tionlz Py 2Py, 202P;2 — 3. Also, let | denote
covariant differentiation within the smgulanty with
respect to 42,,. We can use (14), (A1), and (A3) to
analyze the constraint equation (6). If we ignore (24)
for the moment, the dominant térm is

T%(Kg/a
x 14[Pa—1+ 25 Pyl

—K,)=(t — o) 2%t ,

Py—P )]+ . (253)

In contrast to the Friedmann-like case, this inverse
square term vanishes by (24). Assuming now (24), we
get
T3& Y, —Kp) = (1 — o) oK§1a™d

+ (Pg — Dt —ot')ot, 78] + '. (25b)
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Here the prime denotes the two terms obtained by the
subst1tut10ns ol Ot oK'¢§ =30 — (K¢, P,o P, =
— P, The (t— 4#)”1 dependence near { = 0),‘ agrees
w1th (7) since g,, obeys (3) and (4) (but only to first
order in the approximation). Since the dominant term
(24) cancels out, we cannot set (25a) equal to zero
directly—in general, correction terms from the second
order can contribute to (25a). However, (7) shows that
K§, — K3, = 0 is in any case three conditions within
the singularity. The Friedmann-like expression (19)
can be obtained directly from (25a) by letting ' = 2
Similarly, in the Kasner-like case we find that (6) is
given by the appropriate limit j#'— — « of (25a):

K, =(t— o) oK), — 0KSp)

We turn finally to (13) for the Heckmann—Schiicking-
like case. If f = constant, the analysis is not hard.
Using (13) and (A5) gives, after considerable calcula-
tion the following two results: If P = (P, P,, P3) =
(1,0, 0), then the Lifshitz—Khalatnikov surface ortho-
gonal condition for 74,

Kg/a -
16KS e (26)

T31,2 " T32,1 =0 27

holds. Second, if (27) holds, then 3G ¢ substituted back
into (9)—(11) gives a unique,consistent second approxi-
mation. The Kasner-like case behaves similarly.
Thus the extra function 5#" does not modify the analy-
sis of Ref, 6 in an essential way.

If 3¢ = const many special subcases arise. However
for general values of P one finds from (13), (14), and
(A5) not only (27) but also other conditions, for ex-
ample,

0f .74 =0, A=12 (28)

We omit a detailed discussion of the various special
cases and turn instead to the examples.

IO0. EXAMPLES

In the following we indicate the singularity structure
for some known exact irrotational dust models. The
models are velocity dominated unless otherwise in-
dicated. In the following, we do not give 4¢’ for all
cases; in fact, in many cases it is not known whether
or not a Heckmann—Schiicking-like solution is per-
haps actually Kasner-like (;#/ = — ©). We consider
only dust models with p > 0.

A. Homogeneous Models
1. Friedmann Models
ds2 = — di2 + a2(t)do?, (29)
where do? is the metric of a three-space of constant
curvature, Then near t = a =0, a = €2/3 with € =
%ap = const. Thus the singularity is Friedmann-like,
with
0952 = (g, pdxdx® = €2do?, (30)
2. Heckmann-Schiicking (Bianchi I) Models®

ds? = — df2 + 2, 12(dx9)2,
I, = €2/3-P, tPa(t — 0,}')2/3—Pa,
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€ = 3ap = const,

Eapa=1=ZaP¢21' (31)

ol = const,

This is the prototype of the Heckmann~Schiicking-like
singularities, with

0d82 = Ea 54/3’2Pa(dx“)2,
ol=0,

oK§ = diag(Py, P,, P3),
lof'| = €1 (32)

3. Other Models

In the Kantowski—Sachs models? the singularities are
Heckmann-Schiicking-like. In general, each dust line
in each model hits a p = [1,0,0] smgulanty anda P =
[%,%, — 1] singularity. However, in “open solution a”®
there is only a [1,0, 0] singularity. The Bianchi V
models3 have a Heckmann-Schuckmg -like p =

[4(1 + V3),%,2(1 —V3)] singularity hypersurface.

The Ellis-McCallum models1? contain one example
which is not velocity dominated. A structure can be
assigned to the singularity,but then p = (%, },3). The
mixmaster modelsll are apparently not velocity
dominated, but the structure of the singularity is not
well understood.

B. Inhomogeneous Models

We study in detail two classes of exact solutions of
inhomogeneous dust models, Both admit a three-
parameter group and have very similar structures.
Because of the complexity involved, we discuss the
general solutions in a little detail. All possible singu-
larities that may arise are listed. [There may arise
other (1,0, 0) singularities besides those already
listed here, both in 4t, 3 = 0 and 4, 3 # 0 regions.]

1. Plane Symmetric Models
ds2 = — di2 + ¢2(z, )(dx2 + dy2) + Y2(z, )dz2, (33)

The metric in this form still allows the arbitrary
coordinate transformations: 1= t+ ¢, 2 = f(z). The
Einstein equations reduce to two essential equations
in the generic case (x = 0):

b3 =rp, Kk=x(z) =0 (34)
and L1 .

200 + ¢2 — k2 =0, (35)

Here and in the following the subscript denotes 3/dz,
overhead dots denote 3/9¢. Equation (35) has a first
integral

6 (B2 — k2) = A(2). (36)

The Bianchi identities then require A ; = x¢, where

€ = ap > 0. x and either k or € are two arb1trary
real functions of z to be specified as initial data.
Depending on the values of A and «, a variety of cases
arise. All the different cases may (but need not)
occur in one single solution, Different spatial co-
ordinate neighborhoods {z]z satisfies the conditions
of the specific case} may have different time develop-
ments, and thus different types of singularities.

We give the exact solution for the various cases.

Case (a): k = 0. Equation (34) does not define .
Then using another member of the Einstein equations

together with Eq. (35) gives

o® oW, of = const.  (37)

¢ = o¢(t - ot)2/3,

The special case k = 0 (identically for all z) reduces
to the Einstein~De Sitter solution of the Friedmann
models.

Case (b): k = 0, A > 0. Equations (34) and (36)
give

t—¢() = (>~/2K3)(sinhn — ),
_ K% enVl /A _cothn/2
h= 2)\ <s nh 2%2'(( >’3 sinh2n/2

g [C,3 ¥ %(ﬁ)a(smhn - n)} €>_1' (38)

Case (c): k=0, A <0, put u=—2a> 0:
¢ = £ coshz 2
k2 2

1
Tk

x [ "+ —;(;(%)3 (sinhp + n)],

t—{= 5“—3 (sinhn + 1), ¢ function of z only,
K

coshz? — tanh
K2 3 2 2

_£4_ 6 77% 1 i1 - tanhn/2
W (cos}l 212« <x2) cosh27/2
, 1 ] .
+ = (sinhn + ) )
% [c Z(Ks).s ' ]s (39)

Case (d): ¢ # 0,x =0, Since p # 0 implies ' # 0,
this can only happen at isolated values of z, say z;.
Then at z,:

o= Ko(t — Cp)a

€ K3)
Y=—" ln(t——c)+('30 (t —co)s (40)
ZKOZ KO
everything being evaluated at z,.
We now give the singularity structures (Fig. 3).

In Case (a), the singularity is Friedmann-like with
0ds2 = o8, dxcdx® = ¢2(dx2 + dy?)

o¥2dz2 41, b, o constants. (41)
In case (b), there are two possibilities:

(i) If ¢ 3 = 0, we have only one singularity. Near
n=0,¢> 0, > 0 with
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o= fle)(t— o123, W= gl2)(t — o827,

of = const,  (42)

Thus the singularity is inhomogeneous but is Fried-
mann-like, with

0ds? = og, ,dxedx® = f2(z)(dx2 — dy2) + g2(z)dz2. (43)

(ii) If £ 53 = 0, we have two singularities in general.
They fall in the Heckmann-Schiicking pattern. The
one at n = 0 gives

0ds? = f2(z)(dx2 + dy2)
+ h2(2)dz2, ot =¢(z), (44)

OKg = dla‘g(%: %’ —"%):

where f(z2) is the same function as in (43). The other
one happens at

1

) A Mo A
sinh2 —(—) (——) = coth—¢ , + l(——) sinhn, —
2 \x/ \r2 5 2 <,3 2 <3 '3( Mo 770),

near which we have ¢ = F(z), ¥ = G(2)[t — o(2)],
ol = tng).
We thus have
0dS2 = F2(2)(dx2 + dy2)
+ G2(z)dz2.  (45)

In Case (c) the generic solution has only one singu-
larity at

oK§ = diag(0,0,1),

Mo 1 (u no[ 1/p .
cosh2 — — —) =tanh — (¢4 + —<—> (sinhny + 7’0):, .
2 2/ 4 2L 2\w3/,

K \K

(2/3,2/3,2/3) ot,.* 0

Fig. 2. Possible singularity configuration of a loosely
bound (8 = 0) Tolman-Bondi model showing the splitting
of a Friedman-like (3, %, %) singularity (;¢ = const) into a
(3,5, — %) ot 3 = 0 singularity and a (1,0, 0) singularity
with bang time ,¢'.

A% [xedz >0

L. 4
x-o‘@oltz x-ol_%z

(2/3,2/3,-1/3)
o'-3¢°

of o?
Fig. 3. Possible singularity configuration of a plane symmetric
model corresponding to values of the functions x and A sketched
in the upper corners, showing the complexity of the structure.
Note the local Friedman behavior at 3z (x = 0) and the non-velo-
city-dominated log behavior (x) at 1z (A = 0). In the A < 0 region
there can only be a (1,0, 0) singularity. Thus, the metric must be
discontinuous across ;2. Such defect can be removed if we re-
strict the function x to be nonnegative for all z.
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Near 7, we have
¢ = F), w=6@)t— )],

Thus (K¢ = diag(1,0,0).

ol = Hng). (46)

In Case (d) the solution has two singularities:

(i) Near ¢ = ¢y, we have

¢ =A(—of), ¥ =RBIn(t— 4. (47)
This solution fits into neither (14), (16),or (17). How-
ever, a closer look reveals that since A = 0, Eq. (36)
implies ¢2 = k2 always;thus the singularity need not
be velocity dominated. This serves as a good counter
example.

(ii) Near
(Kado = € -
,}ZO (ot—co)zﬁln(ot—co), (48)

we have ¢ = D, v = E(t — 0?). This is again a Heck-
mann-Schiicking-like singularity, with ,K¢ = diag
(0,0,1).
2. Spherical Symmetvic Models?
ds2 = — di2 + ¢2(r, )dQ2 + Y2(r, t)dr2,
dQ2 = do2 + sin26d¢2, (49)

Allowed arbitrary coordinate transformations are
>t + cand v = f(r). The Einstein equations again
reduce to two equations:

¢,3 = [1 + B(’V)]ll/,
206 + 2 —p = 0. (51)

Blr)>—1, (50)

Here and in the following .3 denotes 3/dr,a raised
dot denotes 9/9f{., Equation (51) has a first integral

d($2 — B) = Alr). (52)

The Bianchi identities require A 3 = e(1 + p)1/2,
where € = ap > 0. Again, A, B, or € are two arbitrary
real functions of » specified as initial data, The
general solution consists of the following cases.

Case (0): B> 0. We can put k2 = 8. Then every-
thing is the same as in the plane symmetric cases,
and the singularity analysis becomes completely
parallel, We omit the repetition here.

Case (B): 8 =0,
¢ = o)t — o t(r)]273,
where o¢(r) = A1/3(3)2/3;

Y =00 alt— o102 — % ot 5 go[t — ot)]L/3
= 09,3t — o 1013t — o 1)), (53)
of =0t") + 300 ot 3/00 3.
Case (y): —1 < <0, Weput k2 =— g > 0. Since

now Eq. (52) requires » > 0, we get only one possibi-
lity:
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A o7
= — gin2 -,
¢ k2 2
1 A . oM K
= sin2<4+ - —mm————
v (1_,(2)1/2(,(2)’3 Y T A =2z
7 1 A) . ]
X cot—+ + = — sinn} |, (54)
C 2[’)’,3 2(1{3 5 iyl

t—y(r) = (/2«3) (n — sinm).

We now consider the structure of the singularities.
In Case (B), we have two possibilities (the singularity
is flat in this case):

(i) ot 3 =0. Then the singularity is Friedmann-like
with
0d82 = o ¢2(r)dQ2 + [0¢'3(r)]2d72, of = const; (55)
(ii) ot 3 = 0. Then the singularity is Heckmann-
Schiicking-like, with

ng = dla'g(%; 3y T %)) dlag(09 Oy 1)0 (56)
Equation (53) shows the smooth transition from Heck-

mann-Schiicking-~like to Friedman-like behavior as
ot .3 approaches zero.

In Case () we again have two possibilities.

(i) y 3 =0. Then the singularity near n =0, * 21
(n integers) is Friedmann-like with

ods? = f2(r)d92 + g2(r)dr2, ,t = const. (57)

(ii) ¥ 3 = 0. We have two singularities of the Heck-~
mann-Schiicking type.

For the first singularity, near =0, + 2mn (1 integers),
we have

¢ = f(’r)[t - of("’)]Z/3’ ot("') = ylr),
W = h(r)(t— ot(r))"1/3, fsame as in (57), (58)
SooKg = diag3, 3, —3),  ods? = f2dQ2 + h2dr2,

For the second singularity, near

1/ Mo Mg 1/x )
——) sin2— = cot — +—[— — sin
« (K2>3 2 9 |:’)’ 375 (KS),S (g no):ly

we have

¢ =Fr), v=EGO)|t— o?("')], o? = t(”"lo);

We note some features of the singularity structure,
All cases except (47), which occurs only on submani-
folds of the singularity, are velocity dominated. The
assumed symmetry restricts the possibilities for p
to ¢,%, —1,(1,0,0),0or ,%,3%). The latter, Fried-
mann-like case occurs only where of 3 = 0 in agree-
ment with (20). On the other hand, (,%, — 3 occurs
only where 5t 3 = 0 and is then always accompanied
by a (1,0, 0) singularity occurring along the same
dust lines at a different {£. One can visualize the
Friedmann-like singularity “splitting” into two dif-
ferent singularities (Fig. 2). A (1,0, 0) singularity
can occur along a dust line without any other kind of
singularity occurring along the same dust line.

The structure of the singularity uniquely determines
the full metric. For example, one can obtain (38)
from (44) by noting A = 4f3/9, k = (£)1/3(f3/h) 4t 3,

¢ = ot In such examples one sees that the space—
time metric cannot be C* unless the whole singularity
structure is C*™.

IV. THE b» BOUNDARY

The assignment of a differentiable structure, metric,
and extrinsic curvature to the singularity can thus
far be carried out systematically only for the velo-
city-dominated irrotational dust models. To try to
generalize one should probably work with the b-
Boundary.4 We now give some fragmentary results
on the b boundary of a first approximation to a velo-
city-dominated solution.

For present purposes we can define the b boundary of
space~-time M as follows!2: Let O(M) be the ortho-
normal frame bundle over M. The points of O(M) can
be locally coordinated by x#,Xt (a,8=1"+-- 4 label
tetrad vectors; i, v = 1 * - 4 vector indices) with
XeXhg (%) =Ny = diag(—1,1,1,1), Let Cbea
curve, with parameter ¢, in O(M), whose tangent is
nowhere vertical, dx#/dq = 0. Introduce along C the
line element

as\? _ < dx* 2 4 dxv 2
@ - Bl )

a=1 a<B=1
(60)

This corresponds to giving O(M) a positive definite
Riemmanian structure. One can then complete OM)
in the standard way. Identifying points and Cauchy
sequences in O(M) which are equivalent under the
homogeneous Lorentz group (x# = x#, X §=L§XE,
Lg = const, LyLIn,, =ng;) gives a boundary, the

b boundary, of M.

For a first approximation g,, to a velocity-dominated
irrotational dust model the points (y¢(x?), x¢) are
points of the b boundary. In fact, consider the line in
O(M) given by { = g, x? = const, X¥ = b8, X4 paral-
lel displaced along x#. This obviously contains
Cauchy sequences terminating at x¢, ,{. Moreover,
for two points (x4, 1), (x@ + dx2, o1 + ot ,dx?) the
“horizontal” distance element Ea (dxp/dgX y) MY g0
to zero, but then the “vertical” distance element [the
second sum in (60)] contains a term of the form

dx® dxe
ac E;EI——)OO‘

Thus two neighboring points (£, x2), with different x2,
are presumably different points of the b boundary.
Whether the topology of the b boundary is consistent
with the manifold structure we have assumed has not
been checked in general,

K$K

V. CONCLUSIONS

To characterize and restrict cosmological models by
analyzing conditions at the bang will presumably be
possible only if we can assign a detailed structure to
the bang in all sensible models. We have shown that
in velocity-dominated irrotational dust models the
bang does have a rather natural and elegant structure
which seems to be consistent with the structure of the
b boundary. There are many other models, not dis~
cussed here, where a very similar structure can be
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assigned (ad hoc) to the singularity. However, we have
not yet been able to assign such a structure to the
mixmaster model’® or the mixmasterlike models.13
Thus it is possible, though in our opinion not likely,
that there are sensible models in which the » boun-
dary cannot usefully be given even a differentiable,
much less a Riemannian, structure.

ACEKNOWLEDGMENTS

The authors are grateful to A, Ali and R. Tabensky for
many discussions. One of us (R.S.) gratefully ack-
nowledges the hospitality of the University of Pitts-
burgh during part of the time this research was being
done.

APPENDIX: STRETCHED METRICS

Let M be an N-dimensional manifold with metric
ds? =g, ,dX%dX® (a,b=1+++ N). Let 7,, (A,B =
1:+++ N) be an orthonormal frame, 7,75, £%% = 6,5.
We shall use the usual rules of the Cartan formalism:
Ty = Tagdx% Ty aTg=3T1,0® 15— 7,0 7,),d7, =
6 TaB ~ Tp> Tap=— Tga,etc. Thus ds2 =25,7, ®
T,4,the curvature form is p 3 = d7,5— 2/cT4c ~ TeBs
and the rule for covariant differentiation is

VarnTa™h =Vap + 2 VeTcans
where V,, V,;,and 7,5, are defined by V, = V,79,
AV, =7.pVapTp,and Tgp =Y cTapcTce 1t Will be
convenient to define F, 3, = T, 5, — T4cp and to let
dFppc = 2ip Fancp Tpe
Now suppose w, = e4Z7, (no sum of course), with the
A, scalar functions on M. Then we call

(A1)

2 =0, w, W, (A2)
the stretch of ds2 along 7, with factors A ;. If we do
not specialize 7, or A 4, this notion is very general,
If ds? is positive-definite, then locally every positive-
definite dI2 is some stretch of a given ds2 since both
metrics can be simultaneously diagonalized at a point.
However, appropriate specializations of 7, and A ,
lead to several useful subcases, as discussed below,

Let dA, = p A,pry and dwy = 2ipwyp ~ Wy With
w,s =— wg,s. Then a moderate calculation gives

204y = 2g Tole XAV (Fypn — 24 4y 545)
— % 2AB_AX_A]"I’ﬂzsxif] - X,Y), (A3)

where (X,Y) denotes interchange of indices. Let

A 5 =2ic AapcTcs Bapc= 3 apc + Ascp) Thena

dreary calculation gives for the curvature form
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8,5 = dwyp — D0 Wae ~ Wep the following:
~20 (W4 ~ W) R b= O (T4 T)® (Th o~ T
ap 47 ETUAET b (T4~ 72)® (75 ~ 7p)
XM pz5p + N appp + Nppag)
2A,+24,-24
Mxms—z[ RETX T7C Fysc Fryc

2Ax+2Ap~2A
X Y
— 2 CA oA
2AC(

YC 6XR6 Ys

FexpFoys + FexyFers)) (A4)

24
~ 48 ype” "X[Byys + (Ags—Ays)Ayy —AxsAsyl;

2A +2Ag-2A
NXYRS "Z [ R S C(zaYSAYCFRXC

24
+ zFrxcFsye) + € XF yscFeryl

+e? X(FXSRY + 2A x5 Fyyn — 2Ay5 Fyyr

—2AyyFyps + ZASYFXRS)'
To check (A4)one canlet Ay = A, =+-+ = A ;then
(A4) yields, after a moderate calculanon the usual
expression for conformally related metrlcs. If we
take the appropriate trace of the curvature tensor,
we find, after some calculations, the Ricci tensor of
diz:
— 4eAS+AYRa,,w;w§
=2 {3“5_“0[ —2Fgycc T 2Fgyc
X (—2Asc + 2Ayc— Fpac —Auc + 2Acc)

— 205y Bycc — 28¢cAye T AycWBac + Faac)l

+ 2(2BYYS — Buys —AusAay — 2AysAgy

+ 2A 4y Ays — Faasy — 2AcyFoes + 2Agy Fecs
24,-24,

1

+AycFeoys — ZFAYCFCSA) —e
1 2Ap*2A52A0-24,

X FascFayc + 3¢ s F

+ (¥, S),

vacFsact
(AD)

where }; means to multiply out all brackets and then
sum over A and/or C if they appear as subscripts in
a given term. As a check, we note that (A5) reduces
to the standard equations for a diagonalizable metric
if dTA =0.

Equations (Al), (A3),and (A5) are those needed in the
main text, (A3)-(A5) have a variety of useful applica-
tions in addition to those already mentioned; for ex-
ample, if space—-time permits an isometry group, it

is often convenient to regard the inner metric of each
orbit as an (orbit-dependent) stretch of a fixed simple
metric. It is conceivable that useful techniques for
solving the field equations could be developed by
some clever choice of ds2, 7, and A ,.
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Statistically Exact Kinematic Dynamo Action in a Box
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A set of statistically exac/ equations is set up to describe dynamo action brought about by velocity turbulence
confined to a finite spatial domain (a “box”). Using a variation of a limit-theorem employed elsewhere by Kac,
we demonstrate that in large enough boxes a large-scale magnetic field is regenerated by such velocity turbu-

lence.
1. INTRODUCTION

Over the past decade the advancement of turbulent
kinematic dynamo theory has been considerable based
on the original investigations by Parker.l In Parker's
original paper it was shown that very rapid cyclonic
velocity turbulence in conjunction with a sheared
large-scale velocity field was capable of generating
dynamo action. Later Braginskii? showed that slow
turbulence in conjunction with a sheared velocity
field would also produce dynamo action.

In 1966, Steenbeck, Krause, and Radler demonstrated
that relical velocity turbulence on its own gave rise
to kinematic dynamo action in an infinite medium.
More recently still, it has been shown34 that isotropic
velocity turbulence on its own gives rise to dynamo
action. It has also been shown3 that both Parker's
dynamo equations and those of Braginskii are limiting
forms of a master dynamo equation which includes
both sheared velocity multiplied by turbulence terms
and turbulence terms on their own, either of which
(or both) will give dynamo action.

In view of the complexity of the general turbulent
kinematic dynamo equations, recourse is normally
made to some approximation scheme in order to
obtain the basic physical behavior of particular terms
in the equations under particular boundary and/or
initial value conditions. We are aware of only two
cases36 in which some exact statistical properties

of the turbulent kinematic dynamo equations are set
forth—and both of these deal with velocity turbulence
in infinite media.

In the first of these papers, 3 a discussion is given
of the irregular genevation of magnetic field brought
about by fluctuations in the level of dynamo activity
(as opposed to irregular generation of magnetic field
brought about by random velocity turbulence with a
fixed level of activity). In the second of these papers®
the singular eigenvalue equations are set up which
describe the behavior of the large-scale field (an
equation of the Dyson type) and the small-scale
turbulent field energy (an equation of the Bethe-
Salpeter type).

In the above two papers, all correlated quantities are
taken to be homogeneous in space and time. In the
present paper where the turbulence is confined to a
“box” the correlated quantities can be neihter homo-
geneous nor isotropic. Further, as we will demon-
strate directly, the finite (but large) size of the box

enters directly into the normal modes and their
growth rates [vide Eq. (58)]. As the size of the box
increases both the level of turbulence [given through
Eq. (3)] and the attendant normal mode growth rate
[given through Eq. (58)] decrease. Thus the generation
of magnetic field brought about by turbulence in a
“box” is rather different than that obtaining in an
infinite medium.

Now most of the astrophysical situations (the Earth,
Sun, galaxy, etc.) in which a dynamo mechanism is in-
voked to account for the continued presence of a
large-scale magnetic field are objects of finite size.
The question then naturally arises: Are there any
statistically exact situations which give kinematic
dynamo activity when the velocity turbulence is con-
fined to a spatial domain of finite size (a ‘box’)?

The purpose of the present paper is to answer this
question affirmatively by considering a simple form
of velocity turbulence confined to a cubical box.

IO. EQUATIONS OF MOTION AND THE EVOLUTION
OF PROBABILITY

Consider then a finite medium, of constant resistivity
1, which is not undergoing either bulk convection or
shear, so that only a turbulent velocity, V, with zero
mean is present. Then the magnetohydrodynamic
equations for the vector potential A are

<% - TIVZ>A,~ = €ijkV]-(X, i)Bk(X, £), (1)
with the magnetic field B given by
B;(x, t) =€ijk8Ak/899. (2)

For random velocities V which are arbitrary func-
tions of both space and time, Egs. (1) and (2) are diffi-
cult to solve.

Elsewhere,3>4,6—8 we have investigated some of the
exact statistical kinematic dynamo.properties of
Eqs. (1) and (2)in an infinite medium when the random
velocity V(x, ¢) was taken to depend on only one co-
ordinate (either spatial or temporal). In the present
paper we consider the possibility of kinematic dyna-
mo action when the turbulent velocity is confined to a
cubical ‘box’ of side L. We describe the turbulent
velocity field V by

V, =V, (t) sin(Nnx/L) cos(Nwy/L) cos(Nnz/L), (3a)
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1. INTRODUCTION

Over the past decade the advancement of turbulent
kinematic dynamo theory has been considerable based
on the original investigations by Parker.l In Parker's
original paper it was shown that very rapid cyclonic
velocity turbulence in conjunction with a sheared
large-scale velocity field was capable of generating
dynamo action. Later Braginskii? showed that slow
turbulence in conjunction with a sheared velocity
field would also produce dynamo action.

In 1966, Steenbeck, Krause, and Radler demonstrated
that relical velocity turbulence on its own gave rise
to kinematic dynamo action in an infinite medium.
More recently still, it has been shown34 that isotropic
velocity turbulence on its own gives rise to dynamo
action. It has also been shown3 that both Parker's
dynamo equations and those of Braginskii are limiting
forms of a master dynamo equation which includes
both sheared velocity multiplied by turbulence terms
and turbulence terms on their own, either of which
(or both) will give dynamo action.

In view of the complexity of the general turbulent
kinematic dynamo equations, recourse is normally
made to some approximation scheme in order to
obtain the basic physical behavior of particular terms
in the equations under particular boundary and/or
initial value conditions. We are aware of only two
cases36 in which some exact statistical properties

of the turbulent kinematic dynamo equations are set
forth—and both of these deal with velocity turbulence
in infinite media.

In the first of these papers, 3 a discussion is given
of the irregular genevation of magnetic field brought
about by fluctuations in the level of dynamo activity
(as opposed to irregular generation of magnetic field
brought about by random velocity turbulence with a
fixed level of activity). In the second of these papers®
the singular eigenvalue equations are set up which
describe the behavior of the large-scale field (an
equation of the Dyson type) and the small-scale
turbulent field energy (an equation of the Bethe-
Salpeter type).

In the above two papers, all correlated quantities are
taken to be homogeneous in space and time. In the
present paper where the turbulence is confined to a
“box” the correlated quantities can be neihter homo-
geneous nor isotropic. Further, as we will demon-
strate directly, the finite (but large) size of the box

enters directly into the normal modes and their
growth rates [vide Eq. (58)]. As the size of the box
increases both the level of turbulence [given through
Eq. (3)] and the attendant normal mode growth rate
[given through Eq. (58)] decrease. Thus the generation
of magnetic field brought about by turbulence in a
“box” is rather different than that obtaining in an
infinite medium.

Now most of the astrophysical situations (the Earth,
Sun, galaxy, etc.) in which a dynamo mechanism is in-
voked to account for the continued presence of a
large-scale magnetic field are objects of finite size.
The question then naturally arises: Are there any
statistically exact situations which give kinematic
dynamo activity when the velocity turbulence is con-
fined to a spatial domain of finite size (a ‘box’)?

The purpose of the present paper is to answer this
question affirmatively by considering a simple form
of velocity turbulence confined to a cubical box.

IO. EQUATIONS OF MOTION AND THE EVOLUTION
OF PROBABILITY

Consider then a finite medium, of constant resistivity
1, which is not undergoing either bulk convection or
shear, so that only a turbulent velocity, V, with zero
mean is present. Then the magnetohydrodynamic
equations for the vector potential A are

<% - TIVZ>A,~ = €ijkV]-(X, i)Bk(X, £), (1)
with the magnetic field B given by
B;(x, t) =€ijk8Ak/899. (2)

For random velocities V which are arbitrary func-
tions of both space and time, Egs. (1) and (2) are diffi-
cult to solve.

Elsewhere,3>4,6—8 we have investigated some of the
exact statistical kinematic dynamo.properties of
Eqs. (1) and (2)in an infinite medium when the random
velocity V(x, ¢) was taken to depend on only one co-
ordinate (either spatial or temporal). In the present
paper we consider the possibility of kinematic dyna-
mo action when the turbulent velocity is confined to a
cubical ‘box’ of side L. We describe the turbulent
velocity field V by

V, =V, (t) sin(Nnx/L) cos(Nwy/L) cos(Nnz/L), (3a)
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V, = V,(t) cos(Nmx/L) sin(Nmy/L) cos(Nnz /L), (3b)

y

V.= V5(t) cos(Nnx/L) cos(Nmy/L) sin(Nnz/L), (3c)
where N is a given integer and where the normal
components of V vanishes on the box walls. We point
out here that the method to be employed in investigat-
ing the kinematic dynamo activity of Eq. (1) works
equally well if (i) the box is rectangular rather than
cubical, (ii) if the fluid is compressible rather than
incompressible, and (iii) if the fluid can flow out of
the box rather than being confined to the box. How-
ever the extra “bookkeeping” necessary when any one,
or all, of the conditions, cubical, incompressible or

LERCHE

Therefore only two of the random velocity amplitudes,
say V; and V,, are independently assignable.

Now write
o0
Ax,y,z,0)= 25 explinL-l(nx +my + k)]
n,ml=-0

X A@n,m, 1 t). (5)

Use Egs. (3)-(5) in Eq.(1). Then equate the coeffici-
ents of like factors exp[inL-1(nx +my + Iz)] to
obtain, after a little algebra,

8AM)
oT

(n,m, 1) + Tr2L~2(n2 + m2 + 2)A®(xn, m, )

e e s, Ll . e (s = Tee LA, - @)~ KDL (o
the basic structure of the equations. For these rea- QAL
sons we confine our attention to the simple situation =57 (,m, 1) + Tn2L-2(n2 +m?2 + 2)AO (n, m, 1)
andom functions of ime with 2oro hear” ot 'tne. = TGl MO -@) - 7@ (©)
remainder of this paper we take the velocity turbul- A2
ence to be incompressible, V.V = 0, so that, from S ,m, 1) + Tr2L-2(n2 + m?2 + 12)AD(n, m, 1)
Egs. (2), we have = Tne(BL)"[V,® + V,®), (6c)
Vi (£) + V,(t) + Va() = 0. (4}  where
1

@ =@ —~NADPw ~N,m —N,l —N) + AW —N,m —N, 1+ N)—AD@u —N,m + N, —N)

— AW —N,m + N, 1+ N)] + @ + NJAD)(n + Nym —N, 1+ N) + A®n + N,m —N, [ —N)

— A0 + Nym + N, 1 +N) —A®@x + Nym + N, I —N)] — (m — N)[A®n —N,m —N, 1 —N)

+ AW —N,m —N,1+N)+A®(@xn + Nym —N, 1+ N)+ A®n + N,m —N,l—N)]

+ m + N)[A®@ + Nym + N, I+ N) +AD@ — Ny +N,1—N) + A®@u + N,m + N,1— N)

+ A®@p —N,m + N, + N}, (7
@ =@m —~N)JA®Pn ~N,m —N,l—N) + A®@@n —N,m + N,1—N) —A@D@n —N,m —N, 1+ N)

—A@p —N,m +N,l+N)]+ (n + NJA®D@n + Nymt —N,1—N) + A@@n + Nym + N, 1 —N)

—A@p + Nym —N, 1+ N) —A®@w + Nym + N, 1+ N)]— (I —NJA®@n —N,m —N,l1—N)

+ A®@ =N, + N, —N) + A®@n + N,m —N,l —N) + A®n + Nym +N,1—N)]

+(1+ N[A®@m + Nym + N, 1 + N) + A®@n —N,m —N,l + N) + A®@ + N,m —N, 1 +N) (8)

+ AW@n — N,m+N,l +N)),
® =m —NA®Mn —N,m —N,1—N) + A®@n —N,m —N, 1+ N) - A¥@u + N;m —N, [+ N)

—A®@ + N,m —N,l—N)] + (m + N)[A®@p — N,m+ N,Il + N) +A®WH — N,m+ N, — N)

—AWp +N,m+N,l +N) —A®@ + N,m+ N,1l —N)] ~ (n — N)[A®P@®m — N,m — N, ~N)

+A®@n —N,m— N,Il +N) + A®On — N,m+ N,l + N) + A®n — N,m + N,[ — N}]

+m +N)[ADR +N,m +N,l + N) +A®@ + Nym—N,I + N) + A®(n + N,m+ N,l —N)

+ A% + N,m— N,1— N)], (9)
@ =m — N[ADn —N,m —N,l—N) + A®@u + Nym —N, | —N) — AD@n ~N,m —N,1+N)

—A®@p + N,m— N, Il +N)] + m + N)[A®D@n —N,m+ N,l —N) + A®@pn + N,m + N, — N)

—A@@R —N,m+N,l +N)—A®@@n +N,m+N,l + N)]—-(1 — NIA®(n — N,m— N,I — N)

+ A0 + Ny m— N,l —N) +A®@u —~N,m + N,l —N) + A®@m + N,m + N, ! —N)]

+ ({ +N)[A®On —N,m—N,l +N) +A0)n + Nym— N,l + N) +A®@n — N,m + N,] + N)

+ A0 + Nym + N, 1 + N)], (10)

® =({0—-N)JA¥@E —N,m —N,l —N) + A®n —N,m + N, 1 —N) — A®¥n + Nym —N,1—N)
—A®p +N,m+N,I—N)]+ (@ + N)[A®u —N,m—N,l +N) +A®n — N,m + N,1 + N)
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— AWl + N,m—N,l +N) —A®p + N,m + N,I + N)]— (o — N)[A®D@n — N,m— N, — N)
+A@p —N,m+N,1—N) +A@pu —N,m—N,l + N) + A@n — N,m + N,[ + N)]
+ M +N|A@D @ +N,m—N,l—N) +A@@ + Nm + N, I —N) +A@@u + Nym —N,l + N)

+A@u + N,m + N, +N)),

(11)

® = (I - N)JA®@E — N,m —N,l —N) + A®@n + Nym —N,1 —N) —AP@n —N,m + N, —N)
—ADp + Nym + N, I —N)]+ (I + N)[A®n —N,m —N,l+N)+AWu + Nym —N, 1+ N)
—AO@pm —N,m + N, +N) —AWn + Nym + N, 1+ N)] — m — NJ[AD@m — N,m —N,l—N)
+A@®wm + Nym — N, Il -N) +A®n -N,m — N, + N) + A®D@n + Nym — N, ! + N)]

+ m +N)JAPn —N,m + N, —=N)+ ADmn + Nym + N,1—N) + A@@u —N,m + N, + N)

+ A@@n + Nym + N, 1+ N)J.

We have suppressed the variable 7 in each A, m, [)

with the understanding that it is present. Further

T = t/T, where T is the correlation time for V. We

have also written V, = €v,, v, = €v,, 80 that (V2) =
)

€° = (Vy).

Now consider the probability P of finding the combina-

tion of values vy, vy, {AW (@, m, 1)}, {AP@, m, 1)}, and

{A@@, m, 1)} at time 7. Let the probability of finding

v, and v, on their own be described by the operator

field £(vq, v5).

Then P(, vy, vy, AW, m, D} {AD 0, m, D),
{A®(n, m, I)}) satisfies the spatially homogeneous
equation
opP

== = L(vy, vy)P —

0
0
2

-0 3AGm,m 1)
i=x,y,2 :
AWM, m, 1)
x(Fpme), 09

where the 9AU)(n, m, [)/31 are given by Eqgs. (6).

While Eq. (13) is both general and exact, it is difficult
to proceed further until the statistical distribution of
v, and v, on their own is specified. For the remaind-
er of this paper we shall take £(v,, v,) to represent

a Gaussian velocity distribution in both v; and v,,
with the same correlation time and intensity in each
component. Then?

n

3 2 2
£(vy, v)P = — (v, P) + —-§—(va) 4 &P 9°P , (14)
av,y ovy v Jvg

and Eq. (13) becomes
opP 5 0 a2p 02pP
2= = =— (1, P) + 5— (0,P) + == + —
o1 dvy 1 ) vy v 8v? v

R 0 (8A(i)(n,m, l)P). (15)

n,mi=—c0, A, m, 1) or
i=x,y,2
_

OR*(n,m,

oT

(12)

T

The first four terms on the right-hand side of Eq. (14)
represent the assumption that the stationary pro-
bability distribution over v,, v, alone is the Gaussian
exp(—z (v + v3)).

The initial values of Al)(n, m, I) are sufficient to
determine the solution of (15). Denote them by
A@(n,m, I;0), so that at 7 = 0 the probability distribu-
tion is

P(r =0) = (2n)1 exp(—3(v3 + v3))

oG
x I o[ADm,m, I; 1) — A, m, 1; 0)]. (16)
n,m,l=-c
i=x%,y,2
To proceed with the solution of Egs. (15) define the
quantities
T ? ll f (j) ’ 4 l' ﬁ
Rifn',m’, 'y vy, vy; 1) = JAG ', m/, )Pn.m'l:_o0
1=X,y,2
x dAD (n e, D)y (17)
so that the amplitude of the component of the ensemble
average vector potential (A) varying as
exp[inL-Y(nx + my + k)] is
A, m, ;7)) = fR"(n, m, vy, vy T)dV, dug, (18)
with the associated ensemble average magnetic field
amplitude

(BOn, m, I; 7)) = exp[—inL1mx + my + Iz)]

X €, (AB@n, m, I; T))% exp[itL1(nx +my + Iz)].
j
(19)

From Eq. (15) we obtain

- L(vq, V) R*m,m, 1) ~12nTL-202 + m2 + 12)R*(n,m, I) + neT(8L)1

X (o{te — N)JRY(t — Nym—N,I —N) +Ry(a — N,m—N,l + N) —R¥(n— N,m + N, — N)
—RYn—N,m+N,l +N)—R?n—N,m—N,l — N)—R:(n— N,m+N,l —N)
+Rz¢n — N,m— N,l + N) +R¢ln — N,m + N, +N)]+ @ +N)RY®w + N,m— N, +N)
+RYm + Nym—N,l—N)—R9u +N,m+N,l+N)—R¥@m + N,m+N,] —N)

—Rép +N,m—N,l —N)—RWK + Nym+N,I—N) +Ri(n + Nym+ N,1 + N)

+R:(n + Nym—N,1+N)|+ m+1)[R*(n + N,m + N,l —N) +R*(n — N,m + N,[ — N)
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—Rm—Nm—N,l +N)—Rw +N,m—N,l +N)]+ m —)[R*(te + N,m +N,I +N)
+R*(t—N,m+N,l +N)— R + Nym—N,l —N)—R<(n — N,m— N, — N)}}

~v,{tr — N)[R#(w — N,m—N,l —N) +Re(a — N,m + N,1 — N) — R2ta — N,m— N, [ + N)
—R:a—N,m+N, 1 +N)]+ @ +N)[R:t + Nym—N,l —N) +R:(n + N,m + N, — N)
—R:(n +N,m—N,l +N) —R*(n + Nym +N,l +N)]— (1 — N)[R*(a — N,m— N,[ — N)
+REp—N,m+N,l—N) +R(n + Nym—N,1 —N) +Rstn + Nym + N,1 — N)| + (| +N)
X [Ri(a +N,m +N,l +N) +R*(n — N,m—N,l —N) +R<(n + Nym— N, + N)

+R*(n — N,m + N,l + N)]}), (20)
M#—l’—l) = L(vq, vy)RY,m, 1) — 129TL™2(2 + m?2 + 2)R¥(n,m, ) + neT(BL)"?

X (v4{m— N)[R*(a — N,m— N,1 — N) + R*(ta — N,m— N,1 +N) —R*(n + N,m— N,l + N)

—R*(n +N,m— N,l +N)—R?(n — N,m— N,I —N) —Rz(n + N,m— N,l — N)

+Rz(n — N,m— N,l +N) +Rz(n + Nym— N,l +N)] + (m +N)[R*(e — N,m + N, + N)

+R*@ —N,m+N,l—-N)—R*a +N,m+N,l +N)—R(n + N,m + N,l — N)

—R*@—N,m+N,l—N)—R¢m +N,m+N,l—N) +R¢u — N,m + N,l + N)

+R:ln +N,m+N,l +N})] + (—n)R¥t — N,m— N, —N) +Ry(pn — N,m + N,[ — N)

—RYpp +Nm+N,] +N)—RYm +Nym—N,l +N)]+ { +N)[Ry@® + Nm +N,l — N)

+R¥(n +Nym— N, —N)—RYm—N,m—N,l +N)—R¥(n — N,m +N,I + N)]}

—vo{m—N)[R2(n — N,m— N,I —N) +R¢(n + Nym—N,l —N) —Rz(n — N,m— N,1 + N)

—R?(un +N,m—N,l +N)]+ m + N)[Re(n — N,m + N,] —N) + Rz(n + N,m + N,I — N)

—Rz(n —N,m+N,l +N)—R:(n + Nym + N,l +N)]— ( — N)[R¥(6e — N,m— N, — N)

+RY(pn + Nym—N,l —N) +R¥(n —N,m +N,l —N) +Ry(n + N,m + N, —N)| + I +N)

X [RY(e — Nym—N,l +N) +R*(n + N,m—N,l +N) +R¥(n—N,m + N, + N)

+R¥(m +N,m +N,l +N)]} (21)
a—R—z—(%l’?ri’—l) = &(vq, v5)R2m,m, I) —a2nTL 22 +m2 + I2)R*(n,m, I) + neT(8L)"?

X (v4{¢ — M)[R*®e — N,m— N,I—N) +R*(u — N,m + N, — N) — R*(n + N,m— N,l — N)

— Rt +N,m+N,l—N)]+( +N)[R*e —N,m—N,l +N) +R*(n — N,m + N,I +N)

—R*(n + N,m—N,l +N)]—R*(n + Nym +N,I + N)]— (o — N)[R¢(n — N,m— N,7 — N)

+R:(z —N,m+N,l —N) +Rz(a — N,m—N,l +N) +Re(n — N,m + N, + N)] + (0 + N)

X [R#(n + Nym +N,l —N) +R*(n + Nym— N, —N) +R*(u + Nym— N,l + N)

+Rz(n + N,m + N,1 + N)]} + v,{(l —N)[R*@®# —N,m —N,l—N) + R¥(n + Nym —N, I —N)

—RY@—N,m+N,l—N) —RYn +N,m+N,l—N)]+ (I +N)[RY(o — N,m— N,l + N)

+RY(n + Nym—N,l +N)—RYe —N,m+N,] +N)—RY(n + Nym+ N,l + N)]— (m— N)

x[Re(n — N,m—N,l —N) +R*(n + Ny m— N,l — N) +Rz(n — N,m— N,[ + N)

+Rz(n + Nym—N,l +N)]+ m +N)R:te — N,m+N,l —N) +R(n + Nym + N,1 — N)

+R:fn— N,m+N,l +N) +R:(n + N,m + N,1 + N)]}). (22)

In writing Egs. (20)~(22) the dependence of each R¢)
on vy, vy, and 7 is implied rather than spelled out
explicitly. By inspection of Egs. (20)—(22), we see
that they represent a linear threefold infinite set of
finite difference equations in n,m, and [; that they are
second order differential equations in v; and v,; and
that the coefficients are independent of time 7. So
each and every R () has normal modes with the de-
pendence

RWm,m, vy, v95 T) = €9'RWOm, m, l; vy, vy), (23)
where o is independent of n,m, I, v,, and v,.
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In order to demonstrate dynamo activity it is both
sufficient and necessary to show that at least one of
the allowed “eigenvalues” o exists with Re(o) > 0.

Before proceeding with the discussion of Eqgs. (20)-
(22), it is opportune here to write down some auxiliary
expressions for we will make use of them in Sec, ITI.

1t will prove convenient to expand later in terms of
the eigenfunctions, i/, of the homogeneous equation

a2y,
dx2
which are

o () + T, =0, (24)
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¥, (x) = exp(— $x2)H ,(x271/2), (25)
where H, is the rth Hermite polynomial. From the
recurrence relation for the Hermite polynomials, we
obtain

21/2xy, (%) = ¢, (6) + 20,5 (). (26)
1t is clear by inspection of Egs. (20)~(22) that by
writing

RWn,m, vy, v,) = E R (r,m, Dy, (w1 W, (0,), (27)

it is possible to reduce the equations to algebraic
finite difference equations in the five-integer space
of n,m, l,v,and s. It is also clear that such a reduc-
tion will then yield an infinite determinant as a con-
sistency condition for the homogeneous solutions to
Egs. (20)~-(22). The zeros of the determinant then
yield the allowed ¢ values. This techniques has been
used elsewhere® to obtain those eigenvalues giving

rise to kinematic dynamo action in an infinite medium,

when the random velocity field is a function of only
one spatial coordinate.

In the present case where the random velocity field
possesses fwo independent amplitudes, which are
functions of time, and also depends on all three spatial
coordinates, we have been unable to obtain (much less
solve!) the infinite determinant. We, therefore, resort
to a different technique to investigate the behavior

and signature of the eigenvalues o of Egs. (20)-(22).

III. REDUCTION OF THE FINITE-DIFFERENCE
EQUATIONS USING A VARIATION OF KAC'S
“LIMIT- THEOREM” APPROACH

So far the finite-difference Egs. (20)~(22) [or their

equivalent using (27)] are statistically exact equations
to the problem of kinematic dynamo activity in a box.
They are quite difficult to reduce any further exactly.

However, when the box is large enough, we can use a
variation of a technique employed by Kac10 which he
ascribes to Smoluchowski.1l In the form suitable for
our equations we write

R®m —~N,-++)y=RWwn/L —-N/L,--+).

For large values of L (N fixed), we have

sinceinthe limit L — o (N fixed) only thosen suchthat
n/L — finite contribute. In order to anticipate the
transformation to continuous variables we write

N = AL,

R(i)(n/L—N/L,

Llwn,m,l) =&, v )=k

with |kl > A
Then for large enough (but finite) L, Eqs. (20)-(22)
reduce to

R* = &(vy, v)R* — 72T ({2 + v2 + E2)R¥

z ¥ x x
rerafui(2 ) S

G

(28)

111

ORY = &(vy, v, )RY — 12T (§2 + v2 + E2)RY
+ ﬂeTA{vl [V——E- + C—a—l%f - Eﬂ%y
e 3K,

2 =L(vq, v,)RE~ 12T (2 + v2 + £2)R?

4

aR" ]

(29)

+ ncTA{vl[CW + Rz~ ¢

+ L) [Rz + V'—a—v- - gaRy:l}

Ri(C’ V’ &, vly 02)-

(30)

where Ri =

Now write
Ri= 7 RinG, v, 03 Wns), @1)

and use the recurrence relation (26) to obtain from
Eqgs. (28)~(30) the equations

oRZ, =— +m)RX —nw2T(2 + v2 + E2)RZ

aRzm—l aR: m+1
+ 1eTA2-1/2:¢ ——T—g + 2m + 1)~—E—a’

ORY o1 OB w1
-5 — 2m + 1)——————au

+ u———[R +2m + 1RE 4]

n,m-1

— RS e + 2m + DR ]
0

+ t’gz [R:-l.m +2p + 1)Rn+1 m]

(1 ¥ "5E>[ f w20+ DR, 1L (82)

OR},, =—{n +m)R}, — 1T ({2 + v2 + £2)RY,

+ 1eTA2" 1/2;1» gRi1m © 200 ¥ 1RE,,

+ 2(n + I)le,m] + v—-

— 2R
Vag[ n-1,m FY:

x [Rzml

*(t3g — b5 Ra
(1 + e57) IR2

=—(n +m)RZ,

+ 2m + DRE o]

w20+ DRY, ]

L +2m + DRy .11, (33)

ORZ, —ﬂznT(C2 + v2 + E2)Rz

nm

n-I,m + 2(11 + 1)Rn+1 m]

+ TreTAE‘l/z; [R
(1 +§ C)[R: -1,m + Z(n * 1)Rn+1 m]

- g*[Rn m-1 T 20m + 1R m+1]

1+ VDY (RE ey + 20m + DRE gll. (34)
The finite difference equations (32)-(34) can be con-
verted into exact differential equations by employing
a technique due to Kac.10 Write

J.Math; Phys., Vol.13,No. 1, January 1972



112 I

QBi6nd= 2 R v EaBn  (35)

We shall refer to the @ as ‘generator fields’ for the
Ri, . Then it is obvious by inspection of Egs. (32)-
{(34) that the generator fields satisfy the coupled
first-order equations

0Q" =~ aQ; — pQs — 7T + 2 + £1)Q”
+ 1eTA2-1/2[C(8Q,” + 20, — BQ,” — 2Q.2)
+v(EQ, + 2975) — £(8Q% + 297;)
+L(aQ} + 2Q%) — (aQ* + 2Q7)
— v(eQ + 2Q%)), (36)

0Q’=— Q) - B3 —1*TE? + v® + £5)Q?

+ 1€TA2-1/2[~ v(aQ] + 297, — 0Q 7 — 2Q7,

+0{aQ] + 2Q)) — £(aQ] + 2Q2,

+ v(pQ; + ZQ;Q —(BQ7+ 2Q})

— £(6QY + 293)], (37
0Q*=— aQ; — Qi — 1 nT(* + % + £9)Q*

+meTA2"1/2[— £(aQ] + 2Q7 ) + aQ” + 2Q7

+L(eQ] +2Q7) — £E(BQ) + 2Q7)

+8Q°+2Q; + v(BR + 2Q1)), (38)
where

i o _[e 9o o, ] i

Qabc..'_[éa"ab ‘ac Q'

The advantage of expanding R¥g, v, £, v;, v,) in the
normal modes of £(v,, v,) and then resumming the
coefficients is fairly clear. By so doing we convert
the second-order equations (28)-(30) (in v, and v,)
into first-order equations (36)-(39) (in ¢ and ) and,
as is usual, discussion of first order equations with
nonconstant coefficients is somewhat simpler than

discussion of second-order equations with noncon-
stant coefficients.

Equations (36)-(38) can be simplified by the trans-
formation
Q' = fiexp[— 1 (a2 + p2)), (39)

to yield
of = —afy + 2’ —gf" + 3B

—nr? T2 + V2 + £2)FF

+ neTA2Y 2[R — 13) + vy — £i2)

~ b T Che— 1J) (40)
of*=—of) + sa®f" — g} + 362

— P T(% + 0% + £y

+rela2 L — L I = R

— 8fia + ), (41)
of "=~ of, + 3%t —pf + 387

_nm?T(C2 + v? + £

+ meTa2Y 2= B0, + AR + U+ v

+fat ) (42)
Note from Eqgs. (40)—(42) that the generator fields f?
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are either centrally symmetric or antisymmetric
with respect to (¢, v, £), i.e.,

fs(_" §>— v, — g) :fs(C; v, g)
fA(—' Cr"—' V,—~ g) = —‘fA(C, v, g).

IV. LONG-WAVELENGTH SYMMETRIC MODES

We have not succeeded in obtaining the general sym-
metric solution to Eqs. (40)-(42). But in demonstrat-
ing that Eqgs. (40)~(42) generate kinematic dynamo
activity the general solution of the equations is not
essential, as we now demonstrate directly.

Consider the long-wavelength situation (£2 + v2 + £2)
nT < 1.

Write
fi=a'a,B) + biy(a, Pk, + ORY) + -,

(43a)
and

(43b)

where k = ({, v, £). Then to O(k9), Egs. (40)-(42) give

0a* = — aa’ — Ba; + 3(0® + p2)a* — neTa2 %%, (44)
0a’=— aa} —Ba} + 3@ + 8%’ - ”€TA21/2“g’ (45)
oa® = — aal —Bag + L(a? + p2)a*

+ reTA2/? (@i + ap). (46)

Note from Eqs. (44)-(46) that the amplitudes a¥, a?,
and a“ are linearly independent. If we had gone to
O(k2) then twenty seven inhomogeneous differential
equations for the b]‘. (e, B) would have resulted with
the a* acting as source terms for the b’s. So the a’s
form the basis for computing the series expansion of
f& in ascending powers of k.

Consider the solution to Egs. (44)-(46). From Eq.
(44) we see that a*(a, ) is separable. Write

a¥(a, B) = R(a)S(8).
Then from Eq. (44) we obtain

—BSg + 3828 = ¢S, (47)
(0 —3a% — c)R + (@ + 1eTA21/2)R =0,  (48)

where c is the separation constant. The general
solution to Eq. (47) is

S(8) = SB~< exp(382), (49)

where S is a constant.

But from Eq. (35) we see that, as 8 — 0, we have
fH(@, 8~ 0) = expla 2 aR,, (k = 0),

so that ¢ = 0 and then S(8) = S exp382.

With ¢ = 0 the general solution to Eq. (48) is

R(a) = R(a + I'G72-9 exp[ila + I')2 — T(a + I,

(50)
where I = neTA21/2,
Now as a — 0, we have
fHa —0,8 2 0) =Rz, =0), (51)



STATISTICALLY EXACT KINEMATIC DYNAMO ACTION 113

so that
RS = R,k = 0)T 0"T%2) exp(3T2), (52)
and then -
Q*a, Bk =0)= 2, Rz,k=0)amm
n,m=0
= R¥o(k = 0)(1 + a/I){T%2-9 exp(— zaT). (53)
Note that this is independent of 8 so that
Q*(a, 8,k = 0) is synonymous with
0
Q*a,8 =0 =k) = Z}OR;O(k = 0)on. (54)
oy

Now replace a by ei® and integrate 0 < 6 < 27 in
Eqgs. (53) and (54). From Eq. (54) we have

27
21R%,(k = 0) = fO Q*(e*®, 3 = 0 = k)ds.

So there exists a symmetric solution for @~ if, and
only if,

27
21 = fo de(1 + ¢i8/T)(r¥2-0) exp(— $Tei®). (55)

Equation (55) gives the allowed o values as functions

of I' in order that a symmetric solution exist. With

z = ei® we can convert the integral in Eq. (55) into

an integral around the unit circle in the complex

z plane centered on the origin. Then Eq. (55) becomes
2ni = $%(1 +2/T)0%2-0) exp(~4Tz). (56)

The immediate problem before us is to find the ¢

values for which the integral on the right-hand side

of Eq. (56) is 2mi.

Some of the roots are obvious. If 372 —og=n (z a
positive integer including zero), then Eq. (56) is satis-

fied. If T2 — ¢ = —m (m a positive integer exclud-
ing zero), then Eq. (56) is satisfied if also I" > 1, If
I'<1and4I'2 — ¢ = —m (m a positive integer), then

Eq. (56) is satisfied if and only if
gm-1 1 LF -0
5;;1_—1 [Z exp(— 2 Z)]z:-r =0
If 3I'2 — ¢ is not an integer (either positive or nega-
tive) then we have so far been unable to obtain the
remaining (if any) roots to Eq. (56). However in
order to demonstrate dynamo activity we do not re-
quire all the roots. For example, the root (n = 0),i.e.,
o =32 = 72¢2T2N2/L2 gives a growing mode with
e-folding time

(57)

7, = L2/(N2n2%€2). (58)
Consider next the vy component of field obtained from
Eq. (45). We see by inspection that this has the same
structure as Eq. (44) if we replace « —» 3 and 8 — a.
So

Q(a, 8,k =0)

2q.
= RYolk = 0)(1 + 8/T)" 72 exp(~ 4TB)  (59)
and the dispersion relation satisfied by @ is exactly
Eq. (55) with the same roots, i.e., the same ¢ values.

Consider finally the z component of field from Eq.
(46). It is again clear by inspection that a#(q, 8) is
separable.

Using an identical argument to that for Eqgs. (44) and
(45), it is easy to show that

Q«a, B,k = 0) = RZ,(k = 0) exp[zT(a + 8)]

X (1 — g/T)T¥2-e(1 — a/T)T%2-0%c)  (60)
where c is the separation constant for Eq. (46). Then

with @ = e9, B = ¢*?,we obtain the dispersion rela-

tion

) % expiTz(1 — z/T)T¥2-0
x ﬂ:; expilz’(1 — 2/ /T)CY2-0+0) = _ 472,  (61)

where the integrals over z and 2’ are to be taken
around the unit circles centered on the origin in the
complex z and z' planes, respectively. The alterna-
tive is Ry = 0.

But we originally assumed that each and every R?
varied as exp(or), so the roots of Eq. (61) have to be
identical to the roots of Eq. (56) if Ry, # 0 # R

* Ryo-

One set of roots to Eq. (61) is obtained by choosing

32 — ¢ =1L, L a positive integer including zero,
(62a)
T2 _o+c=M,
M a positive integer including zero. (62b)
From Egs. (62) we obtain
o=T12 — (L +M). (63)
But from Eq. (56) we have
o=1iT2 —p, (64)

Equations (63) and (64) are compatible if, and only if,

T2 =L +M —n, (65)
which requires L + M = n.

So symmetric long-wavelength dynamo modes exist
in a box with the growth rate o and the product
712¢2T2N2/L2 being positive, discrete, integers. So
the e-folding time of any such disturbance is 7,
=T/m, m =1,2,..., where T is the correlation
time of the turbulent fluid velocity. And the unstable
modes exist when 72¢2T2N2 = L2y, r =1,2,.... In
making these remarks we are assuming that none of
R3g, R}o, and R§ are zero.

In the event that RSO is zero, the modes are

a=14T2 —-n
with no restriction that "2 must be an integer.

Consider now the antisymmetric modes.

V. LONG-WAVELENGTH ANTISYMMETRIC MODES

We again consider the long-wavelength situation
(82 +v2 + 27 < 1,

Write

fi = bi(a, B + by(a, Blv + bi(a, B)E + OF®) + -+ -.
Then to lowest order Eqs. (40)-(42) give
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oby = (a2 + B2)b] — (ad, + Bay)b]
+ T[3,05 + 2,65 — b))}, (66)

by = @® + )b} — (a3, + po,)b%
+ Tagby — b3) — 3, b3], (67)

ob% = 3(a® + g2} — (ad, + B33
~ T3, +3,)3, (68)

ob] = 3(a® + %)} — (ad, + B3, )b}
+ T3, — 8)b?, (69)

ob3 = Ha? + 32)b; — (05, + 83,)05
+ I‘[aa(b‘{ — b;) + ag(bg - b%)]’ (70)

ab} = 3(a® + 8% — (a9, + BoIb3
— T(3, + 29,03, (1)

obf = $(a® + %] — (a3, + 30}

+ T(2, + b5, (72)

obs = 3(a® + %5 — (ad, + B3, b5

+ (3, + 23,)b;, (13)

b} = 5(a® + p*)E — (ad, + B3, D2
+ o, (b5 — b)) + 3, (b5 — b3)], (74)

where 3, = a/au.

Note that Eqgs. (68), (69), and (71)~(73) are homogene-
ous and independent of each other and independent
of the remaining four equations (66), (67), (70), and
('14) in the sense that no knowledge of the latter is
required in order to obtain the general solution to
the former. But, of course, the converse is not true.

It is also clear that if we can obtain the general solu-
tion to Eq. (71) as a function of a, 8, and I then we
can write down by inspection the general solutions to
Eqgs. (72) and (73). For if we denote the general solu-
tion to Eq. (71) by F{a, 8, T'), then to within a multi-
plicative constant b = F(8, &, — I') and b5 =
F@,a,T).

Likewise if we denote the general solution to Eq. (68)
by G(a, 8, I') then to within a multiplicative constant
by = G(— a, 8, T'). Consider Egs.(68) and (71). The
general solution to Eq. (68) is

b; = Tg(,g + DYT¥2-c) (o + I)le-0+r%2)
x exp{i[(@ + )2 + (8 + I')2] — I'(a + 8 + 2T},
(75)
where ¢ is the separation constant. So
bi’ = T?{(B + INYU%2-) g + Tile-oT%2)

x exp{i[(T — @)? + (8 + T)2] — T8 — a + 2I)},
(76)
where, in general, ¢! is not the same as c.

The general solution to Eq. (71) is
b3 = T8 + 2I)QRT*= (T + ¢)(e-0'T¥2)

x exp{i[(a + T)2 + (8 + 2I2] —T'(28 + o + 5T}
)
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So
bf = Ti(a — 2T)(@re-g%(g — )ler-o+ry2)

X exp{i[(8 — T')2 + (¢ — 2T)2] + I'(2a + 8 — 5T},
(78)
bs = Tg(a + 2T)@r*an(g + 1)(g7-0+T%2)

x exp{i[(a + 2I")2 + (8 + I')2] — I'(2a + g + 5T)},

(79)
and, in general, g = ¢' = g”.
From Egs. (35) and (39) we obtain
bila, g,k = 0) = exp[4(a2 + §2)]
) aR. (¢,0,0)
ngm__nm3>) "2
xn%}:‘)aﬁ 3¢ ’GO’ (80a)
bs(@, B,k = 0) = exp[4(a® + 87)]
°° 3R, (0, v, 0
> a"g"‘__ﬂ."i.’ﬁ.__) ., (80b)
n,m=0 ov v=0
by(a, B, k= 0) = exp[i(a® + §%)
] oR,,,(0,0, £)
x R M nmiTr Ty
,,_%;0& BT — !gzo’ (80¢c)
So that
. R : oR,
b10,0,00 == [ . 50,000=%|

1

i _%%p0 |
b50,0,0 =52 |,

Proceeding as for the symmetric modes, we set

a = ¢, g = ei¢, and integrate Egs. (75) and (80) over
0 <0, ¢ < 2r to obtain dispersion relations similar
to those obtained for the symmetric modes. One set
of solutions gives

iT2—¢' =4, iT2—0+c =} (81a)
2r2—g =1, 3iT2_o+q=4, (81b)
MP_g =K, TP _o+g =1, (B1c)
A2 —g” =M, iM2_¢g+gq” =0, (81d)

where i, 7, [, J,K, L,M, and U are positive integers
including zero. 1t is clear that an unstable solution
exists if $I'2 is itself a positive integer. Or if there
is only one nonzero derivative of R(’,O then only one
pair of Egs. (81) needs to be satisfied. For example,
consider that Eq. (81¢) survives. Then

r = 2 _
g’ =2T K, (82)
c=3T2 - (K + L).

One set of solutions is K =0 = L giving 0 =412, s0
that in this case I'? can be a continuous variable and
o> 0.

Alternatively we could consider the remaining four
equations (66), (67), (70), and (74). Theybecome an in-
dependent set if we choose b3 = by = b} =bi = b}
=0.

And once again we obtain dispersion relations giving

rise to unstable solutions, i.e., regenerative kinematic
dynamo action. We see no point in including these
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modes here. The mathematical analysis is similar
to that already given in this section and the disper-
sion relations are encompassed in one or more of
Eqgs. (81).

VI. CONCLUSION AND DISCUSSION

In this paper we have demonstrated for the first time
that turbulent velocity fields confined to a ‘box’ give
rise to kinematic dynamo action using an exact
statistical set of kinematic dynamo equations. The
analysis carried through to the end of Sec. Il is exact
and we also outline there how to obtain the exact
infinite determinant which describes the normal
modes (and their eigenvalues ¢) pertaining to the en-
semble average magnetic field.

In view of the complexity of the general equations, we
analyzed them only partially using a limit-theorem
approach previously employed by Kac.10 We found
that the basic response of the system was either
symmetric or antisymmetric in the “wave-number”
(&, v, £). [Parenthetically we point out that this is a
property of the exact equations involving the Ri(n,
m, ) given in Sec.1I].

For long wavelength disturbances both the symmetric
and antisymmetric modes give rise to kinematic
dynamo action with an e-folding time

T = O(L2/N2712¢2),

These limiting cases are sufficient to establish the
basic point that centrally symmetric turbulent fluid
motions confined to a ‘box’ give rise, on their own, to
kinematic dynamo action.

This result, together with earlier work demonstrating
kinematic dynamo action in infinite media with helical
turbulencel? and isotropic turbulence3 4 suggests
that it is unlikely that any particular system will
possess a distribution of velocity turbulence which
does nof give rise to kinematic dynamo action, be it

a finite or an infinite medium.
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General Structure of the Distribution Functions for the Heisenberg Model and the Ising Model

Tohru Morita*
Department of Physics, Ohio University, Athens, Ohio 45701
(Received 9 June 1971)

The general structure for the distribution functions (reduced density matrices) for systems composed of a
number of elements is given by taking the variation with respect to the distribution functions in the formalism
of the cluster variation method. The parameters or the Lagrange multipliers occurring in the distribution
functions must be determined by the reducibility condition of the distribution functions or by the stationariness

condition of the free energy.

1. INTRODUCTION

The cluster variation method for the cooperative
phenomena has been formulated on the basic varia-
tional principle for the free energy.1-3 Some years
ago, the present author and Tanaka4 showed that the
constant coupling approximation in the form given.by
Callen and Callen,3 where a parameter is determined
by a stationariness condition, is obtained on this more
concrete basis. At the same time, they derived also
the constant coupling approximation in the original
form proposed by Kasteleijn and Kranendonk,® where
the parameter is determined by the consistency rela-
tion between the distribution functions for one spin
and a pair of spins, on the same basis.

In addition to Kasteleijn and Kranendonk, various
authors7-9 have introduced approximation methods
where the form of distribution functions is assumed
and the parameters appearing in them are determined

by some kinds of consistency conditions. The purpose
of the present paper is to give the general structures
for the distribution functions where the parameters
are connected by the consistency relations. This is
done on the basis of the variational principle for the
free energy.

The methods using series expansions and their extra-
polations are developed to an extent that one can
obtain the exact knowledge near the critical point.10
That became possible by calculating higher expansion
coefficients which are related to very large clusters.
The cluster variation method is also expected to give
detailed knowledge about the phase transition when
such large clusters are considered and the limiting
behaviors can be guessed as the larger clusters are
considered. The general knowledge about the struc-
ture of the distribution function is considered to pro-
vide a concrete method of extending the constant coup-
ling approximation to larger clusters.
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of the cluster variation method. The parameters or the Lagrange multipliers occurring in the distribution
functions must be determined by the reducibility condition of the distribution functions or by the stationariness

condition of the free energy.

1. INTRODUCTION

The cluster variation method for the cooperative
phenomena has been formulated on the basic varia-
tional principle for the free energy.1-3 Some years
ago, the present author and Tanaka4 showed that the
constant coupling approximation in the form given.by
Callen and Callen,3 where a parameter is determined
by a stationariness condition, is obtained on this more
concrete basis. At the same time, they derived also
the constant coupling approximation in the original
form proposed by Kasteleijn and Kranendonk,® where
the parameter is determined by the consistency rela-
tion between the distribution functions for one spin
and a pair of spins, on the same basis.

In addition to Kasteleijn and Kranendonk, various
authors7-9 have introduced approximation methods
where the form of distribution functions is assumed
and the parameters appearing in them are determined

by some kinds of consistency conditions. The purpose
of the present paper is to give the general structures
for the distribution functions where the parameters
are connected by the consistency relations. This is
done on the basis of the variational principle for the
free energy.

The methods using series expansions and their extra-
polations are developed to an extent that one can
obtain the exact knowledge near the critical point.10
That became possible by calculating higher expansion
coefficients which are related to very large clusters.
The cluster variation method is also expected to give
detailed knowledge about the phase transition when
such large clusters are considered and the limiting
behaviors can be guessed as the larger clusters are
considered. The general knowledge about the struc-
ture of the distribution function is considered to pro-
vide a concrete method of extending the constant coup-
ling approximation to larger clusters.

J.Math. Phys., Vol.13 No. 1, January 1972



116

In the following two sections, the variation with res-
pect to the distribution functions is taken in the forma-
lism of the cluster variation method, taking account of
the subsidiary conditions. The main conclusion of the
present paper is summarized at the last paragraph of
Sec. 3. In Secs.4~6, simple examples of approxima-
tions based on the present formalism are given for

the purpose of illustration.

The presentation is given for the Heisenberg model.
It is noticed that the results are applicable for the
Ising model or lattice gases by suitable reinterpreta-
tions of the notations.

2. GENERAL STRUCTURE OF THE REDUCED
DENSITY MATRICES: GENERAL THEORY

In Sec. 2 of the preceding paper,4 a short account is
given of the formulation of the cluster variation
method due to the present author.3 That is sum-
marized as follows, by using more abstract notations
for the convenience of the discussion in the following
section,

The free energy F of the system is calculated by the
following variational principle:

F = min §, (2.1)

§ = Trp[H + kT Inp,). (2.2)
The minimum is taken with respect to the trial den-
sity matrix p, under the normalization condition that

Trp, = 1. (2.3)

The system is assumed to consist of L localized
parts, which are called spins for convenience.

In this paper we shall use a symbol i to denote a clus-
ter of spins (iy,...,3,) (n=1,2,...,L andi,,i,,...,
i,=1,2,..,,L). The fact that spini(j =1,2,...,0r
n)s is involved in the cluster i, is denoted by ij € i.
When all the spins j,, j,, ..., and j, involved in a
cluster | is also involved in a cluster i, we call that

i is a subcluster of i. If the number of spins involved
in j is less than that of i, this fact is denoted by j C i.
Notation j & i is used when j is either a subcluster of
i or equal to i, We treat many summations of the

type
A(ilyi21 ""i )

n
=25 a(i;) + a(i,, 1,) + oot alBqs80,0ee,i
i1 i w2 iok21 (]’ k) (1’ 29 ’ n)

=% Z ali yisyees (2.4)

N ).
ml n2jy> jp> s 24,21 m
In terms of the cluster notation, we write this equa-
tion as follows:

A(i) = Z} a(j).
(i’gi)
When the cluster i is the cluster of all the spins in
the system, (2. 4) becomes

(2.4)

A=A(1,2,...,L)
L
=2 27

S5 51 > eee>i:
mel L 28,2, 0024 21

lig, i eeeriy)y (2.5)
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which is simply written as

A + 2ia(i), (2.6)
where the summation is taken over all clusters of
spins in the system.

In the present notation, the Hamiltonian of the system
is expressed as
H:Zh(i) (2.6')
For the Heisenberg model where the formulation
developed in this and the following sections will be
applied, the Hamiltonian is
!

L
H=—2,hS;,~ )3 J,5,°S,, 2.7
FE Lijélkil k5 Tk (2.7)
so that

s_- g7 34 if i= (j)’

h(i) = (_ ijsj.sk ifi= (J, k)y (2' 7')
0, if i is a cluster of more than
two spins.

The trial-reduced density matrix p, (i) for the cluster
i is introduced by

pi) = trgy py, (2.9
where the subscript {L} — i of tr denotes that the
trace is taken over the states for all the L spins ex-
cluding the spins involved in the cluster i. From
(2. 8), one obtains the recurrence relation

pg(i) = trkpt(iy k); (2- 9)

where the spin at site 2 is assumed not to be includ-
ed in the cluster i. Then the function I" (i) and ¥(j)
are introduced by

T (i) = kT tr; pi) Inp,(i) (2.10)
and
ri= 2 ¥ (2.11)
iigi

Using this formula for the case when i is the cluster
of all L spins, one obtains

§ =2 tr k() pdi) + 2, (2.12)
I |

from (2. 2), (2.6), and (2. 8).

The original variational principle (2.1)-(2.3) is
equivalent to the following one: (2.1) where ¥ is
given by (2.12) and the variation is taken with res-
pect to p,(i) with the subsidiary conditions (2. 9).

In practice, we introduce an approximation where y(i)
for some clusters are considered correctly in (2.12)
and the others are ignored. If one introduces Ingyi)
by

Inp(D) = 22 Ing(j), (2.13)

iGich

substitute (2.13) into (2.10) and compare with (2.11),
one finds that

Y(I) = tript(i) lngt(l) (2. 14)
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Hence this approximation may be said as the approxi-
mation where p,(j) for the ignored j is chosen such
that the corresponding Ing,(j) is zero, instead of exe-
cuting the stationariness condition of making the ¥
stationary.

When (i) is ignored but k(i) is not zero, an approxi-
mation must be introduced to express the py(i) in
terms of p,(j) for j for which ¥({) are retained cor-
rectly. A natural choice will be to use

p,(i) = exp[lnp,(i) given by (2. 13)] (2.15)
and neglect Ing,(j) in the exponent for the ignored
clusters. A method of replacing the effect k(i) for the
ignored clusters by the effective potentials for |
which are considered correctly, is presented in the
Appendix. In the text, we shall assume that k(i) is
zero for the ignored clusters.

Following the terminology given in Refs.2 and 3, the
cluster j for which y(j) is considered correctly will
be called a “preserved cluster”. Now the approxima-
tion is characterized by the set of the preserved clus-
ters. For simplicity we shall assume that a subclus-

ter of a preserved cluster is also a preserved cluster.

The set of preserved clusters will be written as U, In
the following, | € U means that | is a preserved clus-
ter and | € U that | is not a preserved cluster or an
ignored cluster.

Neglecting v(j) for the ignored clusters, one obtains

T otro (DR + 5 vl

i i
Gew) (ie)

F = (2.16)

The set of equilibrium distribution functions g(i) must
be determined as p, (i), which make this expression

(2. 16) stationary under the subsidiary conditions
(2.9). This is the stage of the formulation given in
the preceding papers.

In the next place, we shall consider the problem of
taking the variations of (2. 16) with respect to p,(i),
introducing the Lagrange multipliers to secure the
subsidiary conditions (2. 9). Before doing that, the

variational function (2. 16) is modified a little bit.

I';1(i) and (i) are introduced by

Ty (i) = kTtr p(i) Inp(i), (2.17)

Iy(i) = i(@) 71 (i) (2.18)
On the other hand, Ing(i) is introduced by

Inp(i) = LO Ing(j) (2.19)
and then one IntIJtlces that

v1(i) = kTtrp(i) Ing(j). (2.20)

Adding a sum of tr, pt(| Ing(i) over | to the right-hand
side of (2.16) and then subtracting the corresponding
sum of y, (j) defined by (2.17) and (2. 18) from it, one
obtains

= Z) trp(i)k(i) + AT Ing(j) + Z) y2(is

(|€U)

(2.21)
(|€U)

where y,(j) = v(j) — v4(j) is considered to be de-
fined by

T,(i) = (2. 22)

where
I'y(i) = £T tr p(i(lnp,(i) —

— kT tr;p(i) + kT hasbeenaddedfor the convenience of
later calculation. Equation (2. 21) with (2. 22) is equal
to (2. 16) if the subsidiary conditions (2. 9) are satis-
fied, and hence is considered as the function to be
minimized under the subsidiary conditions (2. 9).

ya(i)
iigh) S

Inp(i) — 1) + &T;  (2.23)

Let us introduce a complete set of matrices 1 and
M(i), such that any matrix A in the space of the clus-
ter i is expanded as follows:

A=ay+ Z,,) a,M,(i). (2.24)
For example, in the case of the Heisenberg model, the
set of Y(5,) with 0< /<25 and —I< m < lorits
equ1valent represents the set of 1 and M (k) when
i = (k) and the set of

m; .

o, Yy (Si]-) with 0 < [; < 25,

;. and— 1 s m sl
j 7

i i
or its equivalent represents the set of 1 and M, (i)
when i = (iy,49,.0.,17,).

With the aid of this complete set of matrices, the
subsidiary conditions (2. 9) for the variation is re-
placed by

tr, M ()[tr 0, (i, B) —pi)] = O (2.25)
where % ¢ i and
tr,p(i) — 1 = 0. (2. 26)

Denoting the Lagrange multipliers for the subsidiary
conditions (2.25) and (2. 26) as

X {k; i) and £(3), (2.27)
the variational function is written as
F = {F given by (2.21)}
- EE tra(k; D[tx,p,(i, &) — p,(i))
(l€U,kE| |.k)CU)
— 2 f)[trp, (1) — 1], (2. 28)
(e
where
Mk 0 = 200, (ks DM, (3). (2.29)

The Lagrange multipliers must be determined such
that p,(i), which minimize this expression, satisfy the
subsidiary conditions (2.25) and (2. 26). It is noticed
that the differentiations of the expression (2. 28) with
respect to A, (%; i) and f{i) give the subsidiary condi-
tions (2. 25) and (2.26). This implies that one can
determine these Lagrange multipliers by the condi-
tion that the ¥ is stationary with respect to the varia-
tions of them, instead of the subsidary conditions.

The F given by (2.28) is written explicitly as

F = Z) tro(i)[R(i) + M(i) — fGi) + £T Ing(j)]
273(”’

(‘GU)

(|€U) + (2.30)

J.Math. Phys., Vol.13,No. 1, January 1972
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where

A(j) = Ek vk i) — z? ME;j— k)

(kE€))

(2.31)

(k€jp)

and v5(i) = [v5(i) given by (2.22)] + £(j) is con-
sidered to be defined by

T3() = 22 w(i) (2.32)
(igli)
and
T'3(i) = kT tr,p,(i)[Ino,(i) — Inp (i) — 1] + BT + F(i),
(2.33)
where
Fiy= 2 fi) (2.34)
(,iéi)
The variation
[Gs:/épt(i)]pt(l)=})(l) =0 (2- 35)
gives us
Ing(j) = B[A(j) — k(i) — A(D)]. (2.36)
Substituting this into (2. 19), one obtains
p(i) = expB[F(i) — H(}) — A(i)], (2.37
where
H(i) = E r(j), (2.38)
((g'.')
M= 25 Mi)= vy AED. (2.39)
(i_c|;) (kezi,i_gi.'(i.k)ei)

Note that, when (2. 31) is substituted in (2. 39), A(%;i)
are cancelled if 2 € i and | & i. With the aid of the
normalization conditions for p(i) corresponding to
(2. 26), one obtains

exp[— BF())] = tr; exp{ — BIH() + A()]}
and

F =21,
{

(2. 40)
(2.41)

where f{ij) are calculated from the values of F(i) with
the aid of (2. 34).

The other Lagrange multipliers A ,(k;j) are deter-
mined by the subsidiary conditions corresponding to
(2. 25);

tr, M, (i)[tr,o(i, &) — p(i)] = 0 (2. 42)

or the variational principle

3[F given by (2. 41), (2. 40), and (2. 34)]/6x ,(%; i) = 0.
(2.43)

As a result, one obtains general expressions for the
distribution functions and the free energy, where the
parameters or the Lagrange multipliers appearing in
the expressions must be determined either by the
self-consistency relation or by the stationariness of
the free energy.
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3. GENERAL STRUCTURE OF THE REDUCED
DENSITY MATRICES: APPROXIMATION
METHODS

We have proceeded our calculation in the last section
quite formally without considering on which p, (i) the
variational function ¥ given by (2. 16) does depend
actually. The results obtained are quite general but it
contains much more Lagrange multipliers than is
actually necessary.

As examples, two rather trivial cases willbe consider-
ed. First,the case whenall the clustersare consider-
ed correctly. Then the entropy term in the variation-
al function (2. 16) should be the original one (2. 2),
which depends only on p,. All the reduced density
matrices p, (i) must cancel with each other in the
variational function ¥;and the variational calculation
gives simply

p = exp[p(F — H)], (3.1)
where F is a constant determined by the normaliza-
tion condition (2.3) or Trp = 1. It is obvious that if
p(i) is calculated by reducing this,this set of p and
p(i) is the set which makes the § minimum under the
subsidiary conditions (2.9).

Next example isthe approximation where two clusters
M and N and all their subclusters are retained cor-
rectly. According to (2.11), sum of y( ) for the subset
j of iis I'(i) defined by (2.10). Then the second term
of § given by (2.16) is

2, y()=TM)+ T N)—T(MON).

(oM lor N)
In the sum of T'(M) + T'(V), we have summed 4(i) for
i which is included in the common part M NN and N
twice,and so that contribution is substracted. Then
the variational function includes only the distribution
functions for the clusters,M,N,and MNN if we
assume that the first term is also expressed in terms
of p(M), p(N), and p(MNN), When they are determined
to make the ¥ stationary with the subsidiary condi-
tions that those for M and N reduce to that for M N N
correctly, then the set of distributionfunctions obtain-
edby reducing the distribution functions for M and
Nand MNN is obviously the set which is determined
so as to make the variational function ¥ given by
(2.16) stationary under the subsidiary conditions
(2.9). The result obtained in this way has less Lag-
range multipliers than the set (2.37).

(3.2)

We have considered two trivial examples, where the
result contains far less Lagrange multipliers com-
pared with the general result in the last section. The
simplicity is obtained by noticing which p, (i) actually
appear in the expression of the entropy in the varia-
tional function, ¥ given by (2. 16),in the approxima-
tion considered.

In general, when the approximation is specified by the
set of preserved clusters M, and their subclusters,
the expression for the entropy is expressed as

z (i) =22 (M) —Z; T(M,0 M,)
(iQMi,i:1|,2,...) i 2
(3.3)

+ LM, 0M;N M)~ + -+ 2T ("M),

i>j>k
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which is expressed in terms of the distribution fune-
tions for the M, and their common parts;NM; denotes
the common part of all the clusters M,. Keeping this
fact in mind, we proceed in a similar way as in the
preceding section. Let us call the common parts of
M, , including themselves as m,n, etc., and define 41(n)
for n as

I"(m) = ;T

(hgm)

yTny, (3.4)

where the dagger (1) on the summation sign means
that the summation is taken over the clusters M; and
their common parts. Then the entropy term in F
given by (2.16) is expressed as

Z} y(i)=?T77(n),

)
GieM;i=1,2, .. )

(3.5)

where y1(n) is defined in terms of I'(m) by (3.4), and
so expressed in terms of p, (n) for M, and their com-
mon parts,

In the next place,2¥(n) is introduced by

Z:/ThT(n),

(ncm)

H(m) = (3.6)

and then the first term in (2. 16) is expressed as

2 te.p, (R() = STpu(n)AT(n),

J
(jeM 5i=1,2, ...

(3.7

so that the variational function F in our approxima-
tion is given by

F = ?T [trmpt(m)hT(m) + yHm)]. (3.8)
Introducing I';{m) and yz(n) by
T, (m = kT tr,p(m lnp(m), (3.9
ry(m = an 2y, (3.10)
(hcm)
and Ing®(m) by
Inp(m) = 2. Ingt(n), (3.11)
(ncCm)
so that
1) = kT tr,p,(n) Ingt(n). (3.12)

We add 237, 1(n) given by (3.12) to the right-hand side
of (3. 8) and then subtract the same quantity 2y (n)
which we express in terms of 'yl(m) defined by (3. 9).
Then the variational function ¥ is expressed as

F=5" tr_p, (m[k(m) + kT Ingt(m]
m
+ 2T m,  (3.13)
where 'y;(m) is defined by

IngT(m) — 1] + 2T

Th(m = kT tr,_p,(m{lng] (m) —
(3.14)

and

Thm= 3 y,'(n).

n
(hcm)

{3.15)

The Lagrange multipliers x,(m — m’;m’) are intro-
duced to secure the reducibility of p(m) to p(m’) when
m’ is one of such common parts of m and M, that no
common part of m and J; includes m’,that means no
m’’ included in U exits for which m’cm’'‘cm. The
Lagrange multiplier to secure the normalization con-
dition

trmp(m) =1, 3. 16)
is called fT(m). Then the variational function ¥ is
given by

F =2 trmo, (M1 () + W(m) + kT Ing(m) ~ f1(m)
+ DYim). (3.17)
Here 'y;(m) is given by
T(m) = {T}(m given by (3.14)} + F(m),  (3.18)
Tam = X' v3(), (3.19)
(ncm)
where F(m) is coupled with fT(m) by
Fm) = 237 fi() (3.20)
(rgm)
and A%(m) for a cluster m is
AT (m) = — @T At(m — m’,m*)
(m’Cm)
(nomrey:m-mrcm)
T
+ 2 AT —m,m . (3.21)

n
(mcn)
(non’€U:mcn’Cn)

It is noticed here that the differentiations of (3.17)
with respect to the Lagrange multipliers give the
subsidiary conditions which are to be secured by
them. Hence they may be determined by the station-
ariness conditions, instead of the subsidiary condi-
tions.

The variation with respect to p, (m gives for Ingt(m)

Ingt(m) = B[f T(m) — BT (m) — AT(m)], (3.22)
so that
p(m) = exp{ p[F(m) — H(m) — At(m)]}, (3.23)
where
Af(m) = Z:,T Af(n —~ nNminOm)
(gmaqn (3.24)

(non’€U:innmcn’cn)

Here the restriction for the summation is such that it
is taken over all those n that there exists no com-
mon part of M, which is a subcluster of n and has
nNm as its subcluster. Note that in the effective
Hamiltonian #(m) + AT(m) for the cluster m,A%(n —

nNm; nNm) may be regarded as an effect to the sub-
cluster nNm due to the cluster n — nm which is out-
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side of m. F(m) is determined by the normalization
of p(m), so that

exp[— BF(m)] = try, - exp {— p[H(m) + AT(M]}.  (3.25)
Substituting these into (3. 17), one obtains
F= L;Tf t(m)s (3.26)

where f %(m) is calculated from the values of F(m) cal-
culated by (3. 25), with the aid of (3.20).

As the result, in this formulation, the general expres-
sions for the distribution functions for the cluster

M, and their common parts and that for the free
energy have been obtained. The parameters or the
Lagrange multipliers must be determined either by
the self-consistency conditions or by the variational
principle. If one determines the distribution function
for those subclusters of M, that are not common parts
of M, by reducing those for M, or their common parts,
then the set of the distribution functions makes the §
stationary under the subsidiary conditions (2.42). The
same result is obtained by introducing less Lagrange
multipliers in the present formalism, and this forma-
lism is more convenient when some subclusters of

M, are not common parts of M, .

The conclusion of this section is that the general
expression for the distribution function for the clus-
ters M, and their common parts are given by (3. 23)
with (3.24) in terms of the parameters or the Lag-
range multipliers AT and F(m). F(m) is determined
by the normalization of p(m);that gives (3. 25). AT are
determined by either of the following two procedures:
{i) AT(n — m, m) must be determined by the reducibility
of p(n) to p(m). Once A' are determined, F(m) is cal-
culated by (3. 25) and the free energy F is obtained
via (3.26) and (3.20). (ii) we first calculate F(m) in
terms of AT by (3.25) and then F via (3.20) and (3.26).
Now F is a function of AT. AT are so determined as
to make the obtained expression for F stationary.
The obtained value of F is the free energy of our
system.

4, TRIANGLE APPROXIMATION

The purpose of the present and the following sections
is to illustrate the method of applying the formalism
presented in the preceding sections to simple exam-
ples. The discussions in those sections will be re-
stricted to the Heisenberg model where the exchange
integral is nonzero only between nearest neighbor
pairs of spins. In this section,we consider the
approximation where clusters of three spins are
preserved. The general results in Sec.2 read as
follows:

p(j) = expp[F(j) + &S;, + 2;: G (4.1)

o, k) = expp{F(j, k) + Rh(S;, + S;,)
+ L G AR+ AEGER] - S 0S5,
l

k-]
G=jsk) (4.2)

p(j, k9 l) = expB{F(Jrk’l) + h(SJz + Skz + slz)
+ L mi) + abmsk) + Xm0
(m;e;":k,z)
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+ Alm;j, B) + Amk,l) + Alm;i,1)] + IS Ser
+ 58,08, + 5,5 (4.3)

For the case of spin 3 ,the Lagrange multipliers
take the form

ME;j) = 21 (#;9)S;,, (4.4)

K(l;],k) = X]\(l;j’k)sjz + Az(l;jyk)skz + A:;(l;j,k)sjzskz
+2,4(135,R)5°s, - (4.5)

The coefficients are determined either by the self-
consistency conditions that (S;,),(S;,S, ),and (S;S,)
are calculated consistently by these reduced density
matrices or by the stationariness conditions that the
free energy must be stationary with respect to the
variations with respect to A.

For the pair approximation, A(k; 5} have been found to
be zero for a pair of spins j and b which are farther
apart thannearestneighbors,1! and so thatapproxima-
tion has been found to be equivalent to the bond
approximation where f(j, k) are retained only for the
nearest neighbor pairs of j and 2. For our present
case it is not likely to occur that some A({, %) or

A{l; i, k) are automatically zero. Hence the problem
of taking account of all triplet correctly becomes a
formidable one. However,we believe that the con-
tribution f(j, #,1) becomes less important when j, 2
and ! are far apart with each other. In this situation,
it will be sensible to consider either of the following
two approximations:

(1) Triangle approximation where f(j,%,l) are re-
tained only when 4(i) is nonzero for all three pairs
from j,k,and l.

(2) An approximation where f(j,k,1) are retained
only when 4(i) is nonzero between two or three pairs
from j,k,and .

The triangle approximation will be considered in this
section. For the case of spin 3,the reduced density
matrices are given by

p(f) = expB[FO + (h + z)\)sz], (4.6)

p(j, k) = expp{ F@ + [p +(z — DA + v’ I(S;, + S,,)
+ UA'S;, S, T (T + vad")Ses, ] (4.7)

plj,k1) = expg{F®
(2~ 20+ 2y — IS, + S, +5,,)
+ (V3 - 1))‘" [sz'skz + szslz + Skzslz]
+[J+ (i — IAN(S; 7S, + 5,08, + St
i 5 1 1 (4.8)
where v4 is the number of triangles which consist of
one fixed bond and two others in the lattice, F®),
F@) and F®) are calculated with the aid of the nor-

malization conditions for the p(i) from these expres-
sions. The free energy is given by

%= FO 4+ 1z(F @ — 2F W)

+1zug(F®) — 3F@ + 3F)  (4.9)

in terms of them. The Lagrange multipliers x must
be determined by the reducibility conditions or the
variational principle to make this F stationary.



GENERAL STRUCTURE OF THE DISTRIBUTION FUNCTIONS 121

For the case when spin is more than 3, it is practical
to introduce an approximation to use (4. 6)-(4.9), the
self consistencies for the expectation values other
thanS S Spz0and 5;*S, are neglected. This is
31m11ar to the constant couphng approximation com-
pared to the pair or bond approximation.

Oguchi et al.8 introduced an approximation where
p(j, k) for a pair and p(j, #,1) for a triangle cluster
are given with a set of parameters and determined
the parameters by the reducibility conditions. Com-
paring with our formula, their expressions for the
reduced density matrices have been given on a more
intuitive standpoint.

5. SQUARE APPROXIMATION

For an Ising system of a square, simple cubic,and
body-centered cubic lattices,Kikuchil introduced
the square approximation next to the bond approxim-
ation. In the square approximation, the reduced den-
sity matrices for four spins constitute a square

where each edge connects a pair of nearest neighbors.

We shall consider to apply this approximations to the
Heisenberg model of ferromagnets.

The preserved clusters in the approximations are
the square and their subclusters. The common parts
of the squares are clusters of two spins at nearest
neighbor sites and clusters of one spin. The reduced
density matrices for them are read from the result
of Sec. 3 as follows, when spin is %,

p(j) = expB[F D + (h + 20)8,], (5.1)

p(j, k) = expp{F@ + [k + (z — DA + v )'I(S;, + S,,)

+ YA"S;.S,, + (T + v A)S; s ), (5.2)
p(i,7,k, 1) = expB{ F{O + [+ (z — 2x + 2(vy — LN/
4
><(S.+S.+S )+(u—1)A"
(SzzS]z + S Skz + Skz lz lz 12.)
+ [J + (u4~ A ’]
X (S5, + 7S, + Sy, + S} (5.3)

FQ) F(2) and F4) are calculated by the normaliza-
tion of these. The expression for the free energy is
given by

F

T = F) ¢ L 2[F2) — 2F(1)]

+ 3 zy[FW — 4F@) + 4FW]. (5.4)
Here v, is the number of squares which have a given
bond as an edge; v, = 2,4,and 9 for the square, sim-
ple cubic,and body-centered cubic lattices, respec-
tively. The Lagrange multipliers A are determined
either by the self consistency conditions that the
averages of S;,,5;,S,,,0r §S, calculated by these
are the same 01 by the statlonary conditions that the
F/L is stationary with respect to the variations A.

We may introduce an approximation where the above
formulae are used when spin is more than 3
6. ON THE P. R.WEISS APPROXIMATION

Here we shall consider an approximation, for the
Heisenberg model, which resembles the P. R. Weiss

approximation. The P.R.Weiss approximation was
introduced for a lattice where the lattice can be
divided into two sublattices, A and B, such that all
the nearest neighbors to a lattice site,belonging to
A,belong to the other sublattice B, and vice versa.
The examples are the square, simple cubic,body-
centered cubic lattices. In this approximation, the
distribution function of z + 1 spins, which consists
of a spin and its z nearest neighbors. The reduced
density matrix is assumed to be

p(z+1)(jyk19k2’ .

k) = expp(Fler D 4 hs,,
4 z

#l+ = NS Sy + D IG5, 6.1
=1 =1

A is determined such that (S ;> and (S, ) are equal
with each other.

Let us consider in our scheme an approximation
where the preserved clusters are the clusters of

z + 1 spins, which consists of a spin on the sublat-
tice A and its z nearest neighbors and their sub-
clusters. For this case,the common parts of the
clusters of z + 1 spins are clusters of a pair of
next neighbor spins on sublattice B and clusters of
one spin on B. The reduced density matrices for
them are given,according to the results of Sec.3 as

pU(j) = expp[F U + (0 + 21 + 2V) S, ], (6.2)

P2 (j, k) = expB{F,@ + [h + 21 + (2" — I\ + "]
X(S;,+ S,,) + 2A"'S, .S, + 2055},

(6.3)

pE V(G by kg, .. k)
=expB(FE VD + hS, +[h+ (2 — DA + (2" — 2"
iz )

2 zZ
PR UE S DI EAN ) s.-s,,l> .
=1

l Z s, (6.4)

for the case of spin 3.

For the case when the spin is larger than 3, we have
to introduce more Lagrange multipliers and self-
consistency conditions. However,we consider the
approximation to neglect them. Then we have the
same expressions and the same self-consistency con-
ditions as for the case of spin . If one neglects
furtherf(zz), lngg so that A7, 1" ’,and AV then one
gets

pM(j) = expp[FW) + (h + 2)0)S,,], (6.5)
p(2+1)(jyk19k2, LA )kz)
= expﬁ(F(z"i) +hS;, + [+ (z— D]
2 Fi
X .
LS.t I 2 Skz> : (6.6)

The structure of this p(*1) is completely the same
as the one in the P. R, Weiss approximation. However,
the condition to determine A is that <S; ;20 calculated by
p(z*1) and p‘1) are equal to each other. Hence (S,,)
will be different from (S] ). It is not easy to argue
which gives the better result. In this approximation
all the nearest neighbor pairs of spins are consider-
ed correctly,and so this is considered to be better
than the constant coupling approximation.
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7. VALIDITY OF THE PRESENT SCHEME

In the preceding sections,we discussed how the
cluster variation method is applied when the distri-
bution functions or the reduced density matrices are
correctly considered for a certain type of clusters
of lattice sites. In this section,a discussion is given
about when the method is useful.

When the exact macroscopic properties cannot be
calculated, we consider the problem of how properties
of a small system can represent the properties of

the macroscopic systems. The answer will be that a
reasonable fit is expected if the length of correlation
R_,— e.g.,the distance at which the spin-pair correla-
tion function o(Rif) = (575%) — (S%)(S%),decays to
zero—is fairly small compared with the dimension

L of the small system;e.g.,R, < 5 L. In the cluster
variation method, if we consider the clusters of dimen-
sion up to L,we include all the effects of the correla-
tions involved within this length and hence we expect
very good results if R, < L,because the contribution
from the larger clusters can,in this case,be ignored
when the free energy is minimized. If we consider a
system at high temperatures, the correlation length
will be short and we can easily calculate the proper-
ties of a macroscopic system by considering the
clusters of reasonable dimensions.

At low temperatures, the spin-wave excitations are
good excitation modes for the Heisenberg magnet,12
and the correlation length is expected to be very
large. But if the temperature is not so low,the wave-
length of the spin waves which plays an important
role will not be very large. In that case,the spin-
pair correlation function o(R, .) will decay to a small
value when the distance R, , bécomes of the order of
the wavelength. Thus we may expect reasonable re-
sults by including the clusters up to the dimension of
that wavelength, The other case when the correlation
length becomes large is the critical region.

For the high temperature expansions,the extrapola-
tion methods have been shown to be very powerful

up to the critical point.10 For the present scheme

of approximations,we hope that extrapolation of the
results obtained with the aid of successively larger
clusters will again lead to reasonable results for the
low temperature as well as the critical region. Appli-
cation of the present method to the square Ising
model is under consideration. It is hoped that the
exact results of Onsager13 and Yang!4 will be repro-
duced in a good approximation.
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APPENDIX: EFFECT OF POTENTIALS FOR THE
IGNORED CLUSTERS AND THE WEISS
MOLECULAR FIELD APPROXIMATION

When the cluster i is not a preserved cluster and k(i)
is not zero, p, (i) must be approximately expressed in

J.Math. Phys.,Vol.13,No. 1, January 1972

terms of p,(j) for the preserved clusters j. A method
of doing this has been suggested in Sec.2., Then

trin(i)a () (A1)
in Eq.(2.9) is replaced by
Tri(D)p,(i310,(DD), (A2)

where Tr means the trace over i and also over spins
in | which are not equal to any of i,if any. In the
variational calculations, we need the first derivative
in addition to the value itself for p,(i) = p(j). Hence
instead of (A2), one may use

Tri(i)p(i;{p()})
+ 23 Treh(D[6p(i;{0(ND /6D a(i) — o()].  (A3)

[

It is noticed that (A2) and (A3) have the same value
and the same first derivatives when p,(j) = p(}).

If one uses (A3) instead of (A1) in Eq. (2. 9),the coef-
ficient of pt( i) playsthe role of the effective potential
for the cluster j and hence added to k(j). Then the
argument in the later part of Sec. 2 is valid, where
k(j) must be replaced by the one which includes the
effective potentials due to the potentials for the ignor-
ed clusters. The terms which do not depend on P, (i)
in (A3) should be added to the final expression for

the free energy.

Let us consider the well-known example of the Weiss
molecular field approximation. It is well known that
it is obtained by retaining only I'(j) for clusters com-
posed of one spin in the second line in Eq. (2. 9),
approximating p, (7, 8 by p,(j)p,(k) in the first line

and taking pt?j) to be diagonal in the representation
in which S, is diagonal. For this case,the expres-
sion corresponding to (A3) is

tr; (G, (k) + tr; [t 1G, ) p(0)]p,() — p()]
+trltr n(j, R)p(N)le (k) — p(R)],  (A4)

where h{j, k) = — J;S;*S. Using the assumption that

p,(7) and hence p(j) is diagonal with S;,» this reduces

to

ij <sz> <Skz> - terjk<Skz>szpt(j)

—tr,J;, (sz> S, .0, (k). (AD)
In the approximation where only f{j) are retained in
Eq.(2.37),including the second and third terms in
(A5) in the effective potential in k(;) and H(k),and
(2.34) and (2. 37) are read as

p(j) = expp [F(j) + <h + Z’j ij<skz>>sjz:[:

F=2 J,48;0$8.0 + 23 F(j).
j>k Y

(AS6)

(AT)

Here F(j) is determined by the normalization of (A6)
and ¢S, ,) is determined by calculating the average of
S, , using the distribution function (A6) and solving
the resulting equation for (S;,) = (S, for the ferro-
magnet. These are exactly the expressions in the
Weiss molecular field approximation.
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